楼主: oliyiyi
1041 1

[kdnuggets精品文章转帖]Introduction to Bayesian Inference [推广有奖]

版主

泰斗

0%

还不是VIP/贵宾

-

TA的文库  其他...

计量文库

威望
7
论坛币
271951 个
通用积分
31269.3519
学术水平
1435 点
热心指数
1554 点
信用等级
1345 点
经验
383775 点
帖子
9598
精华
66
在线时间
5468 小时
注册时间
2007-5-21
最后登录
2024-4-18

初级学术勋章 初级热心勋章 初级信用勋章 中级信用勋章 中级学术勋章 中级热心勋章 高级热心勋章 高级学术勋章 高级信用勋章 特级热心勋章 特级学术勋章 特级信用勋章

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
Introduction to Bayesian Inference Pre[url=]Share[/url]

11





Tags: Bayesian, Datascience.com, Probability



Bayesian inference is a powerful toolbox for modeling uncertainty, combining researcher understanding of a problem with data, and providing a quantitative measure of how plausible various facts are. This overview from Datascience.com introduces Bayesian probability and inference in an intuitive way, and provides examples in Python to help get you started.





By DataScience.com Sponsored Post.

Prerequisites

This post is an introduction to Bayesian probability and inference. We will discuss the intuition behind these concepts, and provide some examples written in Python to help you get started. To get the most out of this introduction, the reader should have a basic understanding of statistics and probability, as well as some experience with Python. The examples use the Python package pymc3.

Introduction to Bayesian Thinking

Bayesian inference is an extremely powerful set of tools for modeling any random variable, such as the value of a regression parameter, a demographic statistic, a business KPI, or the part of speech of a word. We provide our understanding of a problem and some data, and in return get a quantitative measure of how certain we are of a particular fact. This approach to modeling uncertainty is particularly useful when:

  • Data is limited
  • We're worried about overfitting
  • We have reason to believe that some facts are more likely than others, but that information is not contained in the data we model on
  • We're interested in precisely knowing how likely certain facts are, as opposed to just picking the most likely fact

The table below enumerates some applied tasks that exhibit these challenges, and describes how Bayesian inference can be used to solve them. Don't worry if the Bayesian solutions are foreign to you, they will make more sense as you read this post:

Typically, Bayesian inference is a term used as a counterpart to frequentist inference. This can be confusing, as the lines drawn between the two approaches are blurry. The true Bayesian and frequentist distinction is that of philosophical differences between how people interpret what probability is. We'll focus on Bayesian concepts that are foreign to traditional frequentist approaches and are actually used in applied work, specifically the prior and posterior distributions.

Typically, Bayesian inference is a term used as a counterpart to frequentist inference. This can be confusing, as the lines drawn between the two approaches are blurry. The true Bayesian and frequentist distinction is that of philosophical differences between how people interpret what probability is. We'll focus on Bayesian concepts that are foreign to traditional frequentist approaches and are actually used in applied work, specifically the prior and posterior distributions.

Consider Bayes' theorem:

Think of A as some proposition about the world, and B as some data or evidence. For example, A represents the proposition that it rained today, and B represents the evidence that the sidewalk outside is wet:

p(rain | wet) asks, "What is the probability that it rained given that it is wet outside?" To evaluate this question, let's walk through the right side of the equation. Before looking at the ground, what is the probability that it rained, p(rain)? Think of this as the plausibility of an assumption about the world. We then ask how likely the observation that it is wet outside is under that assumption, p(wet | rain)? This procedure effectively updates our initial beliefs about a proposition with some observation, yielding a final measure of the plausibility of rain, given the evidence.

This procedure is the basis for Bayesian inference, where our initial beliefs are represented by the prior distribution p(rain), and our final beliefs are represented by the posterior distribution p(rain | wet). The denominator simply asks, "What is the total plausibility of the evidence?", whereby we have to consider all assumptions to ensure that the posterior is a proper probability distribution.

Bayesians are uncertain about what is true (the value of a KPI, a regression coefficient, etc.), and use data as evidence that certain facts are more likely than others. Prior distributions reflect our beliefs before seeing any data, and posterior distributions reflect our beliefs after we have considered all the evidence. To unpack what that means and how to leverage these concepts for actual analysis, let's consider the example of evaluating new marketing campaigns.



二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:introduction troduction Inference Bayesian erence

缺少币币的网友请访问有奖回帖集合
https://bbs.pinggu.org/thread-3990750-1-1.html
沙发
水调歌头 在职认证  发表于 2017-1-8 11:09:33 |只看作者 |坛友微信交流群
顶!d=====( ̄▽ ̄*)b
已有 1 人评分论坛币 收起 理由
oliyiyi + 5 精彩帖子

总评分: 论坛币 + 5   查看全部评分

使用道具

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
加好友,备注jltj
拉您入交流群

京ICP备16021002-2号 京B2-20170662号 京公网安备 11010802022788号 论坛法律顾问:王进律师 知识产权保护声明   免责及隐私声明

GMT+8, 2024-4-25 18:03