| 所在主题: | |
| 文件名: LeSage, Pace - Spatial Econometrics.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1083830.html | |
| 附件大小: | |
|
1 Introduction 1
1.1 Spatial dependence . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The spatial autoregressive process . . . . . . . . . . . . . . . 8 1.2.1 Spatial autoregressive data generating process . . . . . 12 1.3 An illustration of spatial spillovers . . . . . . . . . . . . . . . 16 1.4 The role of spatial econometric models . . . . . . . . . . . . 20 1.5 The plan of the text . . . . . . . . . . . . . . . . . . . . . . . 22 2 Motivating and Interpreting Spatial Econometric Models 25 2.1 A time-dependence motivation . . . . . . . . . . . . . . . . . 25 2.2 An omitted variablesmotivation . . . . . . . . . . . . . . . . 27 2.3 A spatial heterogeneity motivation . . . . . . . . . . . . . . . 29 2.4 An externalities-based motivation . . . . . . . . . . . . . . . 30 2.5 Amodel uncertaintymotivation . . . . . . . . . . . . . . . . 30 2.6 Spatial autoregressive regression models . . . . . . . . . . . . 32 2.7 Interpreting parameter estimates . . . . . . . . . . . . . . . . 33 2.7.1 Direct and indirect impacts in theory . . . . . . . . . 34 2.7.2 Calculating summary measures of impacts . . . . . . . 39 2.7.3 Measures of dispersion for the impact estimates . . . . 39 2.7.4 Partitioning the impacts by order of neighbors . . . . 40 2.7.5 Simplified alternatives to the impact calculations . . . 41 2.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 42 3 Maximum Likelihood Estimation 45 3.1 Model estimation . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2 Estimates of dispersion for the parameters . . . . . . . . . . 54 3.3 Omitted variables with spatial dependence . . . . . . . . . . 60 3.4 An applied example . . . . . . . . . . . . . . . . . . . . . . . 68 3.4.1 Coefficient estimates . . . . . . . . . . . . . . . . . . . 69 3.4.2 Cumulative effects estimates . . . . . . . . . . . . . . 70 3.4.3 Spatial partitioning of the impact estimates . . . . . . 72 3.4.4 A comparison of impacts from different models . . . . 73 3.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 75 4 Log-determinants and Spatial Weights 77 4.1 Determinants and transformations . . . . . . . . . . . . . . . 77 4.2 Basic determinant computation . . . . . . . . . . . . . . . . 81 4.3 Determinants of spatial systems . . . . . . . . . . . . . . . . 84 4.3.1 Scalings and similarity transformations . . . . . . . . 87 4.3.2 Determinant domain . . . . . . . . . . . . . . . . . . . 88 4.3.3 Special cases . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 Monte Carlo approximation of the log-determinant . . . . . . 96 4.4.1 Sensitivity of ρ estimates to approximation . . . . . . 100 4.5 Chebyshev approximation . . . . . . . . . . . . . . . . . . . . 105 4.6 Extrapolation . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.7 Determinant bounds . . . . . . . . . . . . . . . . . . . . . . . 108 4.8 Inverses and other functions . . . . . . . . . . . . . . . . . . 110 4.9 Expressions for interpretation of spatial models . . . . . . . . 114 4.10 Closed-form solutions for single parameter spatial models . . 116 4.11 Forming spatial weights . . . . . . . . . . . . . . . . . . . . . 118 4.12 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 120 5 Bayesian Spatial Econometric Models 123 5.1 Bayesianmethodology . . . . . . . . . . . . . . . . . . . . . . 124 5.2 Conventional Bayesian treatment of the SAR model . . . . . 127 5.2.1 Analytical approaches to the Bayesian method . . . . 127 5.2.2 Analytical solution of the Bayesian spatial model . . . 130 5.3 MCMC estimation of Bayesian spatial models . . . . . . . . 133 5.3.1 Sampling conditional distributions . . . . . . . . . . . 133 5.3.2 Sampling for the parameter ρ . . . . . . . . . . . . . . 136 5.4 TheMCMC algorithm . . . . . . . . . . . . . . . . . . . . . 139 5.5 An applied illustration . . . . . . . . . . . . . . . . . . . . . 142 5.6 Uses for Bayesian spatial models . . . . . . . . . . . . . . . . 145 5.6.1 Robust heteroscedastic spatial regression . . . . . . . 146 5.6.2 Spatial effects estimates . . . . . . . . . . . . . . . . . 149 5.6.3 Models with multiple weight matrices . . . . . . . . . 150 5.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 152 6 Model Comparison 155 6.1 Comparison of spatial and non-spatial models . . . . . . . . 155 6.2 An applied example ofmodel comparison . . . . . . . . . . . 159 6.2.1 The data sample used . . . . . . . . . . . . . . . . . . 161 6.2.2 Comparing models with different weight matrices . . . 161 6.2.3 A test for dependence in technical knowledge . . . . . 163 6.2.4 A test of the common factor restriction . . . . . . . . 164 6.2.5 Spatial effects estimates . . . . . . . . . . . . . . . . . 165 6.3 Bayesian model comparison . . . . . . . . . . . . . . . . . . . 168 6.3.1 Comparing models based on different weights . . . . . 169 6.3.2 Comparing models based on different variables . . . . 173 6.3.3 An applied illustration of model comparison . . . . . . 175 6.3.4 An illustration of MC3 and model averaging . . . . . 178 6.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 184 6.5 Chapter appendix . . . . . . . . . . . . . . . . . . . . . . . . 185 7 Spatiotemporal and Spatial Models 189 7.1 Spatiotemporal partial adjustment model . . . . . . . . . . . 190 7.2 Relation between spatiotemporal and SAR models . . . . . . 191 7.3 Relation between spatiotemporal and SEM models . . . . . . 196 7.4 Covariancematrices . . . . . . . . . . . . . . . . . . . . . . . 197 7.4.1 Monte Carlo experiment . . . . . . . . . . . . . . . . . 200 7.5 Spatial econometric and statistical models . . . . . . . . . . 201 7.6 Patterns of temporal and spatial dependence . . . . . . . . . 203 7.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 207 8 Spatial Econometric Interaction Models 211 8.1 Interregional flows in a spatial regression context . . . . . . . 212 8.2 Maximum likelihood and Bayesian estimation . . . . . . . . 218 8.3 Application of the spatial econometric interaction model . . 223 8.4 Extending the spatial econometric interaction model . . . . . 228 8.4.1 Adjusting spatial weights using prior knowledge . . . . 229 8.4.2 Adjustments to address the zero flow problem . . . . . 230 8.4.3 Spatially structured multilateral resistance effects . . . 232 8.4.4 Flows as a rare event . . . . . . . . . . . . . . . . . . . 234 8.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 236 9 Matrix Exponential Spatial Models 237 9.1 TheMESS model . . . . . . . . . . . . . . . . . . . . . . . . 237 9.1.1 The matrix exponential . . . . . . . . . . . . . . . . . 238 9.1.2 Maximum likelihood estimation . . . . . . . . . . . . . 239 9.1.3 A closed form solution for the parameters . . . . . . . 240 9.1.4 An applied illustration . . . . . . . . . . . . . . . . . . 241 9.2 Spatial error models using MESS . . . . . . . . . . . . . . . 243 9.2.1 Spatial model Monte Carlo experiments . . . . . . . . 246 9.2.2 An applied illustration . . . . . . . . . . . . . . . . . . 247 9.3 A Bayesian version of the model . . . . . . . . . . . . . . . . 250 9.3.1 The posterior for α . . . . . . . . . . . . . . . . . . . . 250 9.3.2 The posterior for β . . . . . . . . . . . . . . . . . . . . 252 9.3.3 Applied illustrations . . . . . . . . . . . . . . . . . . . 253 9.4 Extensions of the model . . . . . . . . . . . . . . . . . . . . . 255 9.4.1 More flexible weights . . . . . . . . . . . . . . . . . . . 255 9.4.2 MCMC estimation . . . . . . . . . . . . . . . . . . . . 256 9.4.3 MCMC estimation of the model . . . . . . . . . . . . 257 9.4.4 The conditional distributions for β, σ and V . . . . . . 258 9.4.5 Computational considerations . . . . . . . . . . . . . . 259 9.4.6 An illustration of the extended model . . . . . . . . . 260 9.5 Fractional differencing . . . . . . . . . . . . . . . . . . . . . . 265 9.5.1 Empirical illustrations . . . . . . . . . . . . . . . . . . 270 9.5.2 Computational considerations . . . . . . . . . . . . . . 275 9.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 277 10 Limited Dependent Variable Spatial Models 279 10.1 Bayesian latent variable treatment . . . . . . . . . . . . . . . 281 10.1.1 The SAR probit model . . . . . . . . . . . . . . . . . . 283 10.1.2 An MCMC sampler for the SAR probit model . . . . 284 10.1.3 Gibbs sampling the conditional distribution for y∗ . . 285 10.1.4 Some observations regarding implementation . . . . . 287 10.1.5 Applied illustrations of the spatial probit model . . . . 289 10.1.6 Marginal effects for the spatial probit model . . . . . . 293 10.2 The ordered spatial probit model . . . . . . . . . . . . . . . 297 10.3 Spatial Tobitmodels . . . . . . . . . . . . . . . . . . . . . . 299 10.5 An applied illustration of spatial MNP . . . . . . . . . . . . 312 10.5.1 Effects estimates for the spatial MNP model . . . . . 314 10.6 Spatially structured effects probitmodels . . . . . . . . . . . 316 10.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . 320 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明