| 所在主题: | |
| 文件名: 数据合并.xls | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1092020.html | |
| 附件大小: | |
|
{:soso_e152:}程序如下,我也安装了uscd_garch工具箱,但是不知道该如何运行,很弱智的问题啊,邮箱whzhongc@126.com
那位能举个例子指导一下我的操作。期待! function [parameters, loglikelihood, Ht, likelihoods, stdresid, stderrors, A, B, scores]= full_bekk_mvgarch(data,p,q, BEKKoptions) % PURPOSE: % To Estimate a full BEKK multivariate GARCH model.****SEE WARNING AT END OF HELP FILE**** % % % USAGE: % [parameters, loglikelihood, Ht, likelihoods, stdresid, stderrors, A, B, scores]= full_bekk_mvgarch(data,p,q,options); % % % INPUTS: % data - A t by k matrix of zero mean residuals % p - The lag length of the innovation process % q - The lag length of the AR process % options - (optional) Options for the optimization(fminunc) % % OUTPUTS: % parameters - A (k*(k+1))/2+p*k^2+q*k^2 vector of estimated parameteters. F % or any k^2 set of Innovation or AR parameters X, % reshape(X,k,k) will give the correct matrix % To recover C, use ivech(parmaeters(1:(k*(k+1))/2) % loglikelihood - The loglikelihood of the function at the optimum % Ht - A k x k x t 3 dimension matrix of conditional covariances % likelihoods - A t by 1 vector of individual likelihoods % stdresid - A t by k matrix of multivariate standardized residuals % stderrors - A numParams^2 square matrix of robust Standad Errors(A^(-1)*B*A^(-1)*t^(-1)) % A - The estimated inverse of the non-robust Standard errors % B - The estimated covariance of teh scores % scores - A t by numParams matrix of individual scores % % % COMMENTS: % You should multiply the data by a constant so that the min std(data) is at least 10.This will help estimation % % *************************************************************************************** % *THIS FUNCTION INVOLVES ESTIMATING MANY PARAMETERS.THE EXACT NUMBER OF PARAMETERS % *NEEDING TO BE ESTIMATED IS (k*(k+1))/2+pk^2+qk^2.FOR A 5 VARIATE (1,1) MODEL THIS % *65 PARAMETERS.ESTIMATION CAN TAKE A VERY LONG TIME.A 10 ASSET MODEL TOOK 12 % *HOURS ON A PIII-700. % *************************************************************************************** % % % Author: Kevin Sheppard % kevin.sheppard@economics.ox.ac.uk % Revision: 2 Date: 12/31/2001 % need to try and get some smart startgin values if size(data,2) > size(data,1) data=data'; end [t k]=size(data); k2=k*(k+1)/2; scalaropt=optimset('fminunc'); scalaropt=optimset(scalaropt,'TolFun',1e-1,'Display','iter','Diagnostics','on','DiffMaxChange',1e-2); startingparameters=scalar_bekk_mvgarch(data,p,q,scalaropt); CChol=startingparameters(1:(k*(k+1))/2); %C=ivech(startingparameters(1:(k*(k+1))/2))*ivech(startingparameters(1:(k*(k+1))/2))'; newA=[]; newB=[]; for i=1:p newA=[newA diag(ones(k,1))*startingparameters(((k*(k+1))/2)+i)]; %#ok<AGROW> end for i=1:q newB=[newB diag(ones(k,1))*startingparameters(((k*(k+1))/2)+i+p)]; %#ok<AGROW> end newA=reshape(newA,k*k*p,1); newB=reshape(newB,k*k*q,1); startingparameters=[CChol;newA;newB]; if nargin<=3 || isempty(BEKKoptions) options=optimset('fminunc'); options.Display='iter'; options.Diagnostics='on'; options.TolX=1e-4; options.TolFun=1e-4; options.MaxFunEvals=5000*length(startingparameters); options.MaxIter=5000*length(startingparameters); else options=BEKKoptions; end parameters=fminunc('full_bekk_mvgarch_likelihood',startingparameters,options,data,p,q,k,k2,t); [loglikelihood,likelihoods,Ht]=full_bekk_mvgarch_likelihood(parameters,data,p,q,k,k2,t); loglikelihood=-loglikelihood; likelihoods=-likelihoods; % Standardized residuals stdresid=zeros(size(data)); for i=1:t stdresid(i,:)=data(i,:)*Ht(:,:,i)^(-0.5); end %Std Errors if nargout>=6 A=hessian_2sided('full_bekk_mvgarch_likelihood',parameters,data,p,q,k,k2,t); h=max(abs(parameters/2),1e-2)*eps^(1/3); hplus=parameters+h; hminus=parameters-h; likelihoodsplus=zeros(t,length(parameters)); likelihoodsminus=zeros(t,length(parameters)); for i=1:length(parameters) hparameters=parameters; hparameters(i)=hplus(i); [HOLDER, indivlike] = full_bekk_mvgarch_likelihood(hparameters,data,p,q,k,k2,t); likelihoodsplus(:,i)=indivlike; end for i=1:length(parameters) hparameters=parameters; hparameters(i)=hminus(i); [HOLDER, indivlike] = full_bekk_mvgarch_likelihood(hparameters,data,p,q,k,k2,t); likelihoodsminus(:,i)=indivlike; end scores=(likelihoodsplus-likelihoodsminus)./(2*repmat(h',t,1)); B=cov(scores); A=A/t; stderrors=A^(-1)*B*A^(-1)*t^(-1); end 本文来自: 人大经济论坛 Matlab及其他计量软件专版 版,详细出处参考: https://bbs.pinggu.org/forum.php?mod=viewthread&tid=1056048&page=1&from^^uid=2691110 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明