| 所在主题: | |
| 文件名: fit.xls | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1156825.html | |
| 附件大小: | |
|
我在利用R2WinBUGS计算时,编译通不过,以下是我的代码,附件是数据。请高手帮我看看,特别是数据导入那块,先谢谢了! library(R2WinBUGS) library(lattice) library(coda) #write model sink("curve.txt") cat(" model { for (i in 1:N) { pred<-1.3+a*pow(d,b) h~dnorm(pred,prec) } # Priors a ~ dnorm(2.0,1.0E-6) b ~ dnorm(0.3,1.0E-6) prec~dgamma(0.001,0.001) # prior for the precision # Assess model fit using a sums-of-squares-type discrepancy for (i in 1:N) { residual <- h-pred # Residuals predicted <- pred # Predicted values sq <- pow(residual, 2) # Squared residuals for observed data # Generate replicate data and compute fit stats for them h.new ~ dnorm(pred, prec) # one new data set at each MCMC iteration sq.new <- pow(h.new-predicted, 2) # Squared residuals for new data } fit <- sum(sq[]) # Sum of squared residuals for actual data set fit.new <- sum(sq.new[]) # Sum of squared residuals for new data set bpvalue <- mean(test) # Bayesian p-value } ",fill=TRUE) sink() hd <- read.csv("fit.csv", header=TRUE) # Inits function inits <- function(){ list(a=rnorm(1.5), b=rnorm(0.1), prec=rlnorm(1))} # Parameters to estimate params <- c("a","b", "prec", "p.decline", "fit", "fit.new", "bpvalue","residual", "predicted") # MCMC settings nc=1 ; ni=10000 ; nb=200 ; nt=1 # Start Gibbs sampler out <- bugs(hd, inits=inits, parameters=params, model="curve.txt", n.thin=nt, n.chains=nc, n.burnin=nb, n.iter=ni, debug=TRUE) print(out, dig=3) |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明