| 所在主题: | |
| 文件名: Matlab基础及其应用教程.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1250969.html | |
| 附件大小: | |
|
Contents
Preface to the Second Edition vii Preface to the First Edition xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Variable Types and Terminology . . . . . . . . . . . . . . 9 2.3 Two Simple Approaches to Prediction: Least Squares and Nearest Neighbors . . . . . . . . . . . 11 2.3.1 Linear Models and Least Squares . . . . . . . . 11 2.3.2 Nearest-Neighbor Methods . . . . . . . . . . . . 14 2.3.3 From Least Squares to Nearest Neighbors . . . . 16 2.4 Statistical Decision Theory . . . . . . . . . . . . . . . . . 18 2.5 Local Methods in High Dimensions . . . . . . . . . . . . . 22 2.6 Statistical Models, Supervised Learning and Function Approximation . . . . . . . . . . . . . . . . 28 2.6.1 A Statistical Model for the Joint Distribution Pr(X, Y ) . . . . . . . 28 2.6.2 Supervised Learning . . . . . . . . . . . . . . . . 29 2.6.3 Function Approximation . . . . . . . . . . . . . 29 2.7 Structured Regression Models . . . . . . . . . . . . . . . 32 2.7.1 Difficulty of the Problem . . . . . . . . . . . . . 32 xiv Contents 2.8 Classes of Restricted Estimators . . . . . . . . . . . . . . 33 2.8.1 Roughness Penalty and Bayesian Methods . . . 34 2.8.2 Kernel Methods and Local Regression . . . . . . 34 2.8.3 Basis Functions and Dictionary Methods . . . . 35 2.9 Model Selection and the Bias–Variance Tradeoff . . . . . 37 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 39 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3 Linear Methods for Regression 43 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Linear Regression Models and Least Squares . . . . . . . 44 3.2.1 Example: Prostate Cancer . . . . . . . . . . . . 49 3.2.2 The Gauss–Markov Theorem . . . . . . . . . . . 51 3.2.3 Multiple Regression from Simple Univariate Regression . . . . . . . . 52 3.2.4 Multiple Outputs . . . . . . . . . . . . . . . . . 56 3.3 Subset Selection . . . . . . . . . . . . . . . . . . . . . . . 57 3.3.1 Best-Subset Selection . . . . . . . . . . . . . . . 57 3.3.2 Forward- and Backward-Stepwise Selection . . . 58 3.3.3 Forward-Stagewise Regression . . . . . . . . . . 60 3.3.4 Prostate Cancer Data Example (Continued) . . 61 3.4 Shrinkage Methods . . . . . . . . . . . . . . . . . . . . . . 61 3.4.1 Ridge Regression . . . . . . . . . . . . . . . . . 61 3.4.2 The Lasso . . . . . . . . . . . . . . . . . . . . . 68 3.4.3 Discussion: Subset Selection, Ridge Regression and the Lasso . . . . . . . . . . . . . . . . . . . 69 3.4.4 Least Angle Regression . . . . . . . . . . . . . . 73 3.5 Methods Using Derived Input Directions . . . . . . . . . 79 3.5.1 Principal Components Regression . . . . . . . . 79 3.5.2 Partial Least Squares . . . . . . . . . . . . . . . 80 3.6 Discussion: A Comparison of the Selection and Shrinkage Methods . . . . . . . . . . . . . . . . . . . 82 3.7 Multiple Outcome Shrinkage and Selection . . . . . . . . 84 3.8 More on the Lasso and Related Path Algorithms . . . . . 86 3.8.1 Incremental Forward Stagewise Regression . . . 86 3.8.2 Piecewise-Linear Path Algorithms . . . . . . . . 89 3.8.3 The Dantzig Selector . . . . . . . . . . . . . . . 89 3.8.4 The Grouped Lasso . . . . . . . . . . . . . . . . 90 3.8.5 Further Properties of the Lasso . . . . . . . . . . 91 3.8.6 Pathwise Coordinate Optimization . . . . . . . . 92 3.9 Computational Considerations . . . . . . . . . . . . . . . 93 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 94 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Contents xv 4 Linear Methods for Classification 101 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Linear Regression of an Indicator Matrix . . . . . . . . . 103 4.3 Linear Discriminant Analysis . . . . . . . . . . . . . . . . 106 4.3.1 Regularized Discriminant Analysis . . . . . . . . 112 4.3.2 Computations for LDA . . . . . . . . . . . . . . 113 4.3.3 Reduced-Rank Linear Discriminant Analysis . . 113 4.4 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . 119 4.4.1 Fitting Logistic Regression Models . . . . . . . . 120 4.4.2 Example: South African Heart Disease . . . . . 122 4.4.3 Quadratic Approximations and Inference . . . . 124 4.4.4 L1 Regularized Logistic Regression . . . . . . . . 125 4.4.5 Logistic Regression or LDA? . . . . . . . . . . . 127 4.5 Separating Hyperplanes . . . . . . . . . . . . . . . . . . . 129 4.5.1 Rosenblatt’s Perceptron Learning Algorithm . . 130 4.5.2 Optimal Separating Hyperplanes . . . . . . . . . 132 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 135 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5 Basis Expansions and Regularization 139 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.2 Piecewise Polynomials and Splines . . . . . . . . . . . . . 141 5.2.1 Natural Cubic Splines . . . . . . . . . . . . . . . 144 5.2.2 Example: South African Heart Disease (Continued)146 5.2.3 Example: Phoneme Recognition . . . . . . . . . 148 5.3 Filtering and Feature Extraction . . . . . . . . . . . . . . 150 5.4 Smoothing Splines . . . . . . . . . . . . . . . . . . . . . . 151 5.4.1 Degrees of Freedom and Smoother Matrices . . . 153 5.5 Automatic Selection of the Smoothing Parameters . . . . 156 5.5.1 Fixing the Degrees of Freedom . . . . . . . . . . 158 5.5.2 The Bias–Variance Tradeoff . . . . . . . . . . . . 158 5.6 Nonparametric Logistic Regression . . . . . . . . . . . . . 161 5.7 Multidimensional Splines . . . . . . . . . . . . . . . . . . 162 5.8 Regularization and Reproducing Kernel Hilbert Spaces . 167 5.8.1 Spaces of Functions Generated by Kernels . . . 168 5.8.2 Examples of RKHS . . . . . . . . . . . . . . . . 170 5.9 Wavelet Smoothing . . . . . . . . . . . . . . . . . . . . . 174 5.9.1 Wavelet Bases and the Wavelet Transform . . . 176 5.9.2 Adaptive Wavelet Filtering . . . . . . . . . . . . 179 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 181 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Appendix: Computational Considerations for Splines . . . . . . 186 Appendix: B-splines . . . . . . . . . . . . . . . . . . . . . 186 Appendix: Computations for Smoothing Splines . . . . . 189 xvi Contents 6 Kernel Smoothing Methods 191 6.1 One-Dimensional Kernel Smoothers . . . . . . . . . . . . 192 6.1.1 Local Linear Regression . . . . . . . . . . . . . . 194 6.1.2 Local Polynomial Regression . . . . . . . . . . . 197 6.2 Selecting the Width of the Kernel . . . . . . . . . . . . . 198 6.3 Local Regression in IRp . . . . . . . . . . . . . . . . . . . 200 6.4 Structured Local Regression Models in IRp . . . . . . . . 201 6.4.1 Structured Kernels . . . . . . . . . . . . . . . . . 203 6.4.2 Structured Regression Functions . . . . . . . . . 203 6.5 Local Likelihood and Other Models . . . . . . . . . . . . 205 6.6 Kernel Density Estimation and Classification . . . . . . . 208 6.6.1 Kernel Density Estimation . . . . . . . . . . . . 208 6.6.2 Kernel Density Classification . . . . . . . . . . . 210 6.6.3 The Naive Bayes Classifier . . . . . . . . . . . . 210 6.7 Radial Basis Functions and Kernels . . . . . . . . . . . . 212 6.8 Mixture Models for Density Estimation and Classification 214 6.9 Computational Considerations . . . . . . . . . . . . . . . 216 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 216 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 7 Model Assessment and Selection 219 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 219 7.2 Bias, Variance and Model Complexity . . . . . . . . . . . 219 7.3 The Bias–Variance Decomposition . . . . . . . . . . . . . 223 7.3.1 Example: Bias–Variance Tradeoff . . . . . . . . 226 7.4 Optimism of the Training Error Rate . . . . . . . . . . . 228 7.5 Estimates of In-Sample Prediction Error . . . . . . . . . . 230 7.6 The Effective Number of Parameters . . . . . . . . . . . . 232 7.7 The Bayesian Approach and BIC . . . . . . . . . . . . . . 233 7.8 Minimum Description Length . . . . . . . . . . . . . . . . 235 7.9 Vapnik–Chervonenkis Dimension . . . . . . . . . . . . . . 237 7.9.1 Example (Continued) . . . . . . . . . . . . . . . 239 7.10 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . 241 7.10.1 K-Fold Cross-Validation . . . . . . . . . . . . . 241 7.10.2 The Wrong and Right Way to Do Cross-validation . . . . . . . . . . . . . . . 245 7.10.3 Does Cross-Validation Really Work? . . . . . . . 247 7.11 Bootstrap Methods . . . . . . . . . . . . . . . . . . . . . 249 7.11.1 Example (Continued) . . . . . . . . . . . . . . . 252 7.12 Conditional or Expected Test Error? . . . . . . . . . . . . 254 Bibliographic Notes . . . . . . . . . . . . . . . . . . . . . . . . . 257 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明