| 所在主题: | |
| 文件名: ersz.xlsx | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1254356.html | |
| 附件大小: | |
|
我做了一个MV-BEKK模型,三元的,但是用BHHH估计方法和BFGS估计方法估计出来的参数结果有很大出入,BFGS估计出来的参数T检验量显著的,在BHHH下却不显著了。。 以下是程序,不对之处还望指正!
calender(sevenday)2010 6 18 allocate 2012:12:20 open data "D:\process\WinRATS Pro 8.012121\数据 \ ersz.xlsx " data(format=xlsx,org=columns) / er szsb set er = log(er) set sz = log(sz) set sb = log(sb) set err = er - er(1) set szr = sz - sz(1) set sbr = sb - sb(1) system(mode1=var1) variables err szr sbr lags 1 det constant end(system) garch(p=1,q=1,mode1=var1,mv=bekk,pmethod=bhhh,piters=10) MV-GARCH, BEKK - Estimation by BHHH NO CONVERGENCE IN 16 ITERATIONS LAST CRITERION WAS0.0000000 SUBITERATIONS LIMIT EXCEEDED. ESTIMATION POSSIBLY HAS STALLED OR MACHINE ROUNDOFF IS MAKING FURTHER PROGRESS DIFFICULT TRY HIGHER SUBITERATIONS LIMIT, TIGHTER CVCRIT, DIFFERENT SETTING FOR EXACTLINE OR ALPHA ON NLPAR RESTARTING ESTIMATION FROM LAST ESTIMATES OR DIFFERENT INITIAL GUESSES MIGHT ALSO WORK Daily(7) Data From 2010:06:19 To 2012:02:15 Usable Observations 607 Log Likelihood 2373.4645 Variable Coeff Std Error T-Stat Signif ************************************************************************************* 1.ERR{1} 0.421464 1.703904 0.247350.80463567 2.SZR{1} 0.023056 0.229144 0.100620.91985452 3.SBR{1} 0.018195 0.212509 0.085620.93176754 4.Constant -0.004035 0.061473 -0.065640.94766183 5.ERR{1} -0.222139 22.521542 -0.009860.99213029 6.SZR{1} 0.514110 2.657763 0.193440.84661664 7.SBR{1} 0.295234 2.576193 0.114600.90876147 8.Constant -0.021454 0.311075 -0.068970.94501673 9.ERR{1} -0.847583 21.812389 -0.038860.96900370 10. SZR{1} 0.386388 2.816724 0.137180.89089137 11. SBR{1} 0.472043 2.673667 0.176550.85985986 12. Constant 0.005877 0.362987 0.016190.98708205 13. C(1,1) 0.008213 0.051687 0.158890.87375551 14. C(2,1) 0.021845 0.464668 0.047010.96250298 15. C(2,2) 0.024733 0.208680 0.118520.90565393 16. C(3,1) 0.006185 0.512205 0.012070.99036614 17. C(3,2) 0.028309 0.263522 0.107420.91445231 18. C(3,3) -0.0000111570.053739 -7.18296e-0090.99999999 19. A(1,1) 0.127543 1.302694 0.097910.92200631 20. A(1,2) 0.167066 7.014196 0.023820.98099759 21. A(1,3) -0.055264 7.283187 -0.007590.99394583 22. A(2,1) 0.008711 0.196294 0.044380.96460359 23. A(2,2) 0.132445 1.177238 0.112500.91042311 24. A(2,3) -0.007510 1.068526 -0.007030.99439209 25. A(3,1) -0.028882 0.248033 -0.116450.90729955 26. A(3,2) -0.093375 1.771254 -0.052720.95795744 27. A(3,3) 0.065484 1.807029 0.036240.97109224 28. B(1,1) 0.919466 0.723912 1.270140.20403637 29. B(1,2) -0.343400 4.556516 -0.075360.93992463 30. B(1,3) -0.175175 5.238847 -0.033440.97332552 31. B(2,1) 0.002106 0.076471 0.027540.97803062 32. B(2,2) 1.012776 0.439478 2.304500.02119482 33. B(2,3) 0.037890 0.376051 0.100760.91974287 34. B(3,1) 0.006374 0.064562 0.098730.92135432 35. B(3,2) -0.014998 0.378949 -0.03958 0.96842904 36. B(3,3) 0.974313 0.484321 2.011710.04425049 接下来是BFGS方法下的估计结果: system(mode1=var1) variables err szr sbr lags 1 det constant end(system) garch(p=1,q=1,mode1=var1,mv=bekk,pmethod=bfgs,piters=10) MV-GARCH, BEKK - Estimation by BFGS NO CONVERGENCE IN 200 ITERATIONS LAST CRITERION WAS0.0027069 Daily(7) Data From 2010:06:19 To 2012:02:15 Usable Observations 607 Log Likelihood 7039.8533 Variable Coeff Std Error T-Stat Signif ************************************************************************************ 1.ERR{1} 0.99719910 0.00237387 420.073450.00000000 2.SZR{1} 0.00073980 0.00105177 0.703380.48181834 3.SBR{1} -0.00085640 0.00081491 -1.050920.29329727 4.Constant -0.00017141 0.00014307 -1.198110.23087303 5.ERR{1} 0.04690045 0.02826964 1.659040.09710782 6.SZR{1} 0.98720530 0.01102580 89.535920.00000000 7.SBR{1} 0.00611300 0.00876629 0.697330.48559602 8.Constant 0.00165852 0.00175239 0.946430.34392766 9.ERR{1} -0.01309313 0.02830064 -0.462640.64361941 10. SZR{1} 0.05574097 0.01234377 4.515720.00000631 11. SBR{1} 0.95120835 0.00960919 98.989430.00000000 12. Constant 0.00830550 0.00171896 4.831700.00000135 13. C(1,1) -0.00020299 0.00017421 -1.165190.24394142 14. C(2,1) 0.01004779 0.00119406 8.414820.00000000 15. C(2,2) 0.00513893 0.00210055 2.446470.01442622 16. C(3,1) -0.00059902 0.00061592 -0.972570.33076787 17. C(3,2) -0.00038448 0.00080127 -0.479830.63134614 18. C(3,3) -0.00000622 0.00102912 -0.006050.99517512 19. A(1,1) -0.07963097 0.05321638 -1.496360.13455932 20. A(1,2) -1.68833904 0.58046311 -2.908610.00363043 21. A(1,3) 1.24440565 0.61317632 2.029440.04241331 22. A(2,1) -0.06318163 0.00490437 -12.882730.00000000 23. A(2,2) 0.28050534 0.09136633 3.070120.00213975 24. A(2,3) 0.01202312 0.07593032 0.158340.87418569 25. A(3,1) 0.00659181 0.00349265 1.887340.05911463 26. A(3,2) 0.08012758 0.04132739 1.938850.05251969 27. A(3,3) -0.11419219 0.04628369 -2.467220.01361655 28. B(1,1) -0.34952232 0.10604955 -3.295840.00098128 29. B(1,2) -1.45993399 0.86873152 -1.680540.09285321 30. B(1,3) -10.55373366 0.75674619 -13.946200.00000000 31. B(2,1) -0.05568243 0.00562023 -9.907500.00000000 32. B(2,2) -0.12636183 0.16666580 -0.758170.44834629 33. B(2,3) 0.23189906 0.11179770 2.074270.03805387 34. B(3,1) 0.02493584 0.00715660 3.484320.00049340 35. B(3,2) 0.05414030 0.06964698 0.777350.43695043 36. B(3,3) 0.08461779 0.08101339 1.044490.29625812 两种算法下的估计结果明显是不一样的,这是怎么回事呢? 我的编程没有错吧!求大神解惑,不胜感激!!! |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明