| 所在主题: | |
| 文件名: Ajit C. Tamhane(auth.)-Statistical Analysis of Designed Experiments_ Theory and .pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1436784.html | |
| 附件大小: | |
|
Statistical Analysis of Designed Experiments Theory and Applications AJIT C. TAMHANE Northwestern University WILEY A JOHN WILEY & SONS, INC., PUBLICATION Copyright © 2009 by John Wiley & Sons, Inc. All rights reserved. Contents Preface Abbreviations 1Introduction 1.1Observational Studies and Experiments / 1 1.2Brief Historical Remarks / 4 1.3Basic Terminology and Concepts of Experimentation / 5 1.4Basic Principles of Experimentation / 9 1.4.1How to Minimize Biases and Variability? / 9 1.4.2Sequential Experimentation / 14 1.5Chapter Summary / 15 Exercises / 16 2Review of Elementary Statistics 2.1Experiments for a Single Treatment / 20 2.1.1Summary Statistics and Graphical Plots / 21 2.1.2Confidence Intervals and Hypothesis Tests / 25 2.1.3Power and Sample Size Calculation / 27 2.2Experiments for Comparing Two Treatments / 28 2.2.1Independent Samples Design / 29 2.2.2Matched Pairs Design / 38 2.3Linear Regression / 41 2.3.1Simple Linear Regression / 42 2.3.2Multiple Linear Regression / 50 2.4Chapter Summary / 62 Exercises / 62 viiiCONTENTS 3Single Factor Experiments: Completely Randomized Designs70 3.1Summary Statistics and Graphical Displays / 71 3.2Model / 73 3.3Statistical Analysis / 75 3.3.1Estimation / 75 3.3.2Analysis of Variance / 76 3.3.3Confidence Intervals and Hypothesis Tests / 78 3.4Model Diagnostics / 79 3.4.1Checking Homoscedasticity / 80 3.4.2Checking Normality / 81 3.4.3Checking Independence / 81 3.4.4Checking Outliers / 81 3.5Data Transformations / 85 3.6Power of F-Test and Sample Size Determination / 87 3.7Quantitative Treatment Factors / 90 3.8One-Way Analysis of Covariance / 96 3.8.1Randomized Block Design versus Analysis of Covariance / 96 3.8.2Model / 96 3.8.3Statistical Analysis / 98 3.9Chapter Notes / 106 3.9.1Randomization Distribution of F-Statistic / 106 3.9.2F-Test for Heteroscedastic Treatment Variances / 108 3.9.3Derivations of Formulas for Orthogonal Polynomials / 110 3.9.4Derivation of LS Estimators for One-Way Analysis of Covariance / 112 3.10Chapter Summary / 113 Exercises / 114 4Single-Factor Experiments: Multiple Comparison and Selection Procedures126 4.1Basic Concepts of Multiple Comparisons / 127 4.1.1Family / 127 4.1.2Family wise Error Rate / 128 4.1.3Bonferroni Method / 129 4.1.4Union-Intersection Method / 130 4.1.5Closure Method / 131 CONTENTSix 4.2Pairwise Comparisons / 132 4.2.1Least Significant Difference and Bonferroni Procedures / 133 4.2.2Tukey Procedure for Pairwise Comparisons / 134 4.2.3Step-Down Procedures for Pairwise Comparisons / 136 4.3Comparisons with a Control / 139 4.3.1Dunnett Procedure for Comparisons with a Control / 139 4.3.2Step-Down Procedures for Comparisons with a Control / 142 4.4General Contrasts / 144 4.4.1Tukey Procedure for Orthogonal Contrasts / 145 4.4.2Scheffe Procedure for All Contrasts / 146 4.5Ranking and Selection Procedures / 148 4.5.1Indifference-Zone Formulation / 148 4.5.2Subset Selection Formulation / 154 4.5.3Multiple Comparisons with the Best / 155 4.5.4Connection between Multiple Comparisons with Best and Selection of Best Treatment / 157 4.6Chapter Summary / 158 Exercises / 159 5Randomized Block Designs and Extensions168 5.1Randomized Block Designs / 169 5.1.1Model / 169 5.1.2Statistical Analysis / 171 5.1.3Randomized Block Designs with Replicates / 177 5.2Balanced Incomplete Block Designs / 180 5.2.1Statistical Analysis / 182 5.2.2Interblock Analysis / 185 5.3Youden Square Designs / 188 5.3.1Statistical Analysis / 189 5.4Latin Square Designs / 192 5.4.1Choosing a Latin Square / 192 5.4.2Model / 195 5.4.3Statistical Analysis / 195 5.4.4Crossover Designs / 198 5.4.5Graeco-Latin Square Designs / 202 5.5Chapter Notes / 205 XCONTENTS 5.5.1Restriction Error Model for Randomized Block Designs / 205 5.5.2Derivations of Formulas for BIB Design / 206 5.6Chapter Summary / 211 Exercises / 212 General Factorial Experiments224 6.1Factorial versus One-Factor-at-a-Time Experiments / 225 6.2Balanced Two-Way Layouts / 227 6.2.1Summary Statistics and Graphical Plots / 227 6.2.2Model / 230 6.2.3Statistical Analysis / 231 6.2.4Model Diagnostics / 235 6.2.5Tukey's Test for Interaction for Singly Replicated Two-Way Layouts / 236 6.3Unbalanced Two-Way Layouts / 240 6.3.1Statistical Analysis / 240 6.4Chapter Notes / 245 6.4.1Derivation of LS Estimators of Parameters for Balanced Two-Way Layouts / 245 6.4.2Derivation of ANOVA Sums of Squares and /''-Tests for Balanced Two-Way Layouts / 246 6.4.3Three- and Higher Way Layouts / 248 6.5Chapter Summary / 250 Exercises / 250 Two-Level Factorial Experiments256 7.1Estimation of Main Effects and Interactions / 257 7.1.12 2 Designs / 257 7.1.22 3 Designs / 261 7.1.32 p Designs / 266 7.2Statistical Analysis / 267 7.2.1Confidence Intervals and Hypothesis Tests / 267 7.2.2Analysis of Variance / 268 7.2.3Model Fitting and Diagnostics / 270 7.3Single-Replicate Case / 272 7.3.1Normal and Half-Normal Plots of Estimated Effects / 272 7.3.2Lenth Method / 278 CONTENTSxi 7.3.3Augmenting a 2 P Design with Observations at the Center Point / 279 7.42 P Factorial Designs in Incomplete Blocks: Confounding of Effects / 282 7.4.1Construction of Designs / 282 7.4.2Statistical Analysis / 286 7.5Chapter Notes / 287 7.5.1Yates Algorithm / 287 7.5.2Partial Confounding / 288 7.6Chapter Summary / 289 Exercises / 290 Two-Level Fractional Factorial Experiments300 8.12 p - q Fractional Factorial Designs / 301 8.1.12 p ~ l Fractional Factorial Design / 301 8.1.2General 2 p ~ q Fractional Factorial Designs / 307 8.1.3Statistical Analysis / 312 8.1.4Minimum Aberration Designs / 316 8.2Plackett-Burman Designs / 317 8.3Hadamard Designs / 323 8.4Supersaturated Designs / 325 8.4.1Construction of Supersaturated Designs / 325 8.4.2Statistical Analysis / 327 8.5Orthogonal Arrays / 329 8.6Sequential Assemblies of Fractional Factorials / 333 8.6.1Foldover of Resolution III Designs / 334 8.6.2Foldover of Resolution IV Designs / 337 8.7Chapter Summary / 338 Exercises / 339 Three-Level and Mixed-Level Factorial Experiments351 9.1Three-Level Full Factorial Designs / 351 9.1.1Linear-Quadratic System / 353 9.1.2Orthogonal Component System / 361 9.2Three-Level Fractional Factorial Designs / 364 9.3Mixed-Level Factorial Designs / 372 9.3.12 p \ q Designs / 373 9.3.2 2 ρ 7><> Designs / 378 9.4Chapter Notes / 386 xiiCONTENTS 9.4.1Alternative Derivations of Estimators of Linear and Quadratic Effects / 386 9.5Chapter Summary / 388 Exercises / 389 10 Experiments for Response Optimization395 10.1Response Surface Methodology / 396 10.1.1Outline of Response Surface Methodology / 396 10.1.2First-Order Experimentation Phase / 397 10.1.3Second-Order Experimentation Phase / 402 10.2 Mixture Experiments / 412 10.2.1Designs for Mixture Experiments / 414 10.2.2Analysis of Mixture Experiments / 416 10.3 Taguchi Method of Quality Improvement / 419 10.3.1Philosophy Underlying Taguchi Method / 422 10.3.2Implementation of Taguchi Method / 425 10.3.3 Critique of Taguchi Method / 432 10.4 Chapter Summary / 436 Exercises / 437 11 Random and Mixed Crossed-Factors Experiments448 11.1One-Way Layouts / 449 11.1.1Random-Effects Model / 449 11.1.2Analysis of Variance / 450 11.1.3 Estimation of Variance Components / 452 11.2 Two-Way Layouts / 455 11.2.1Random-Effects Model / 455 11.2.2Mixed-Effects Model / 459 11.3 Three-Way Layouts / 464 11.3.1Random- and Mixed-Effects Models / 464 11.3.2Analysis of Variance / 465 11.3.3Approximate F-Tests / 468 11.4 Chapter Notes / 472 11.4.1 Maximum Likelihood and Restricted Maximum Likelihood (REML) Estimation of Variance Components / 472 11.4.2Derivations of Results for One- and Two-Way Random-Effects Designs / 475 11.4.3 Relationship between Unrestricted and Restricted Models / 478 xiii 11.5 Chapter Summary / 479 Exercises / 480 Nested, Crossed-Nested, and Split-Plot Experiments487 12.1 Two-Stage Nested Designs / 488 12.1.1Model / 488 12.1.2Analysis of Variance / 489 12.2 Three-Stage Nested Designs / 490 12.2.1Model / 491 12.2.2Analysis of Variance / 492 12.3Crossed and Nested Designs / 495 12.3.1Model / 495 12.3.2Analysis of Variance / 496 12.4Split-Plot Designs / 501 12.4.1Model / 504 12.4.2Analysis of Variance / 505 12.4.3 Extensions of Split-Plot Designs / 508 12.5 Chapter Notes / 515 12.5.1Derivations of E(MS) Expressions for Two-Stage Nested Design of Section 12.1 with Both Factors Random / 515 12.5.2Derivations of E(MS) Expressions for Design of Section 12.3 with Crossed and Nested Factors / 517 12.5.3 Derivations of E(MS) Expressions for Split-Plot Design / 520 12.6 Chapter Summary / 523 Exercises / 524 Repeated Measures Experiments536 13.1Univariate Approach / 536 13.1.1Model / 537 13.1.2Univariate Analysis of Variance for RM Designs / 537 13.2 Multivariate Approach / 548 13.2.1One-Way Multivariate Analysis of Variance / 548 13.2.2Multivariate Analysis of Variance for RM Designs / 549 13.3 Chapter Notes / 555 13.3.1Derivations of E(MS) Expressions for Repeated Measures Design Assuming Compound Symmetry / 555 13.4 Chapter Summary / 558 Exercises / 559 xivCONTENTS 14.2 14 Theory of Linear Models with Fixed Effects 14.1 Basic Linear Model and Least Squares Estimation / 566 14.1.1Geometric Interpretation of Least Squares Estimation / 568 14.1.2Least Squares Estimation in Singular Case / 570 14.1.3 Least Squares Estimation in Orthogonal Case / 572 Confidence Intervals and Hypothesis Tests / 573 14.2.1Sampling Distribution of j8 / 573 Sampling Distribution of s 2 I 574 Inferences on Scalar Parameters / 575 Inferences on Vector Parameters / 575 Extra Sum of Squares Method / 577 Analysis of Variance / 579 Power of F-Test / 583 Chapter Notes / 586 14.4.1Proof of Theorem 14.1 (Gauss-Markov Theorem) / 586 14.4.2Proof of Theorem 14.2 / 586 Chapter Summary / 587 Exercises / 588 566 14.2.2 14.2.3 14.2.4 14.2.5 14.2.6 14.3 14.4 14.5 Appendix AVector-Valued Random Variables and Some Distribution Theory A. 1 Mean Vector and Covariance Matrix of Random Vector / 596 A.2Covariance Matrix of Linear Transformation of Random Vector / 597 A.3 Multivariate Normal Distribution / 598 A.4Chi-Square, F-, and t-Distributions / 599 A.5Distributions of Quadratic Forms / 601 A.6Multivariate i-Distribution / 605 A.7Multivariate Normal Sampling Distribution Theory / 606 595 Appendix BCase Studies608 B.lCase Study 1: Effects of Field Strength and Flip Angle on MRI Contrast / 608 B.l.lIntroduction / 608 B.l.2Design / 609 B.l.3Data Analysis / 610 CONTENTSXV B.1.4Results / 612 B.2Case Study 2: Growing Stem Cells for Bone Implants / 613 B.2.1Introduction / 613 B.2.2Design / 614 B.2.3Data Analysis / 614 B.2.4Results / 614 B.3Case Study 3: Router Bit Experiment / 619 B.3.1Introduction / 619 B.3.2Design / 619 B.3.3Data Analysis / 623 B.3.4Results / 624 Appendix C Statistical Tables627 Answers to Selected Exercises644 References664 Index675 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明