搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  14689.rar
资料下载链接地址: https://bbs.pinggu.org/a-14689.html
附件大小:
546.31 KB   举报本内容
<P>当我们使用binary dependent model时,怎样对结果进行解释是很头痛的事,该教程可以告诉你怎样通过stata软件图示出自变量对因变量的主效应、边际效应等,利用此项功能,将使你的logit回归分析比一般人上几个层次!</P>
<P>This paper considers the role of covariates when using predicted probabilities
to interpret main effects and interactions in logit models. While predicted
probabilities are very intuitive for interpreting main effects and interactions, the
pattern of results depends on the contribution of covariates. We introduce a concept
called the covariate contribution, which reflects the aggregate contribution of
all of the remaining predictors (covariates) in the model and a family of tools to
help visualize the relationship between predictors and the predicted probabilities
across a variety of covariate contributions. We believe this strategy and the accompanying
tools can help researchers who wish to use predicted probabilities as
an interpretive framework for logit models acquire and present a more comprehensive
interpretation of their results. These visualization tools could be extended to
other models (such as binary probit, multinomial logistic, ordinal logistic models,
and other nonlinear models).</P>

[此贴子已经被作者于2005-5-13 23:28:11编辑过]



    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2025-12-24 22:56