| 所在主题: | |
| 文件名: Lecture Notes in Financial Econometrics - Soderlind.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1510799.html | |
| 附件大小: | |
|
Lecture Notes in Financial Econometrics (MSc course) Paul Söderlind 13 June 2013Contents 1 Review of Statistics 51.1 Random Variables and Distributions . . . . . . . . 5 1.2 Moments . . . . . . . . . . . . .. . . . . . . . . . . . . . 11 1.3 Distributions Commonly Used in Tests . . . . . . 14 1.4 Normal Distribution of the Sample Mean as an Approximation . . . . 17 A Statistical Tables 19 2 Least Squares Estimation 22 2.1 Least Squares . . . . . . . . . . . . . . . . 22 2.2 Hypothesis Testing . . . . . . .. . . . . 43 2.3 Heteroskedasticity . . . . . . . .. . . . . 53 2.4 Autocorrelation . . . . . . . .. . . . . . . . 56 A A Primer in Matrix Algebra 59 A Statistical Tables 64 3 Regression Diagnostics 673.1 Misspecifying the Set of Regressors . . . 67 3.2 Comparing Non-Nested Models . . . . . . 68 3.3 Non-Linear Models . . . . . . . . . . 68 3.4 Outliers . . .. . . 69 3.5 Estimation on Subsamples . .. . . 69 3.6 Robust Estimation . . . . . . 734 Asymptotic Results on OLS 80 4.1 Properties of the OLS Estimator when “Gauss-Markov” Is False . . . 80 4.2 Motivation of Asymptotics . . . . . . 80 4.3 Asymptotics: Consistency . . . . . . 80 4.4 When LS Cannot be Saved . . .. . . 82 4.5 Asymptotic Normality . . .. . . . 87 5 Index Models 89 5.1 The Inputs to a MV Analysis . .. . . 89 5.2 Single-Index Models . . . . . . . 90 5.3 Estimating Beta . . . . . . . . 95 5.4 Multi-Index Models . . . . . . . . 97 5.5 Principal Component Analysis . . . . . . 1005.6 Estimating Expected Returns . . . . . . . . 104 6 Testing CAPM and Multifactor Models 106 6.1 Market Model . . . . .. . 106 6.2 Calendar Time and Cross Sectional Regression . . .. . . . 1176.3 Several Factors . . . . . . . . 119 6.4 Fama-MacBeth . . . . . . . . . 120A Statistical Tables 124 7 Time Series Analysis 127 7.1 Descriptive Statistics . . . . . .. . . 127 7.2 Stationarity . . . . . . . . . .. . 128 7.3 White Noise . . . . . . . . . . . 129 7.4 Autoregression (AR) . . . . . .. . . 129 7.5 Moving Average (MA) . . . . .. . . 138 7.6 ARMA(p,q) . . . . . . . . . . . . 139 7.7 VAR(p) . . . . . . . . .. . . 140 7.8 Impulse Response Function . . . . . . . . 142 7.9 Non-stationary Processes . . . . . 144 2 8 Predicting Asset Returns 155 8.1 Autocorrelations . . . . . . . . . . . . . . 155 8.2 Other Predictors and Methods . . . . . . . . . . . 163 8.3 Out-of-Sample Forecasting Performance . . . .. . . 166 8.4 Security Analysts . . . . . . . . . 1859.1 Maximum Likelihood . . . . . . . . 185 9.2 Key Properties of MLE . . . . . . . . . . . 191 9.3 Three Test Principles . . . . . . . . . . 192 9.4 QMLE . . . . . . . .. . . . 19210 ARCH and GARCH 194 10.1 Heteroskedasticity . . . . .. . . 194 10.2 ARCH Models . . . . . . . . . . . 200 10.3 GARCH Models . . . . . . . . . 203 10.4 Non-Linear Extensions . . . . .. . . 206 10.5 (G)ARCH-M . . . . . .. . . . . 208 10.6 Multivariate (G)ARCH . . . . .. . . 209 11 Risk Measures 214 11.1 Value at Risk . . . . . . .. . . 214 11.2 Expected Shortfall . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 11.3 Target Semivariance (Lower Partial 2nd Moment) and Max Drawdown 223 12 Return Distributions (Univariate) 229 12.1 Estimating and Testing Distributions . . . . . .. . . . 229 12.2 Tail Distribution . . . . . . . . . . . . 242 13 Return Distributions (Multivariate) 25213.1 Recap of Univariate Distributions . . . . . .. . . 252 13.2 Exceedance Correlations . . . . . . . 252 13.3 Beyond (Linear) Correlations . . . . . . 254 13.4 Copulas . . . . . . .. . . . 260 13.5 Joint Tail Distribution . . . . .. . . . 267 14 Option Pricing and Estimation of Continuous Time Processes 274 14.1 The Black-Scholes Model . . . . . . . . . . . . . . . . . . . . . . . . 274 14.2 Estimation of the Volatility of a Random Walk Process . . . . . . . . 282 15 Event Studies 289 15.1 Basic Structure of Event Studies . . .. . . . . 289 15.2 Models of Normal Returns . .. . . . . 291 15.3 Testing the Abnormal Return . .. . . . 295 15.4 Quantitative Events . . . . . .. . . 297 16 Kernel Density Estimation and Regression 299 16.1 Non-Parametric Regression . . . . .. . 299 16.2 Examples of Non-Parametric Estimation . . . . 307 17 Simulating the Finite Sample Properties 31217.1 Monte Carlo Simulations . . . . . . . . 313 17.2 Bootstrapping . . . . . .. . . . . 317 18 Panel Data 32218.1 Introduction to Panel Data . . . . . . . . 322 18.2 Fixed Effects Model . . . . .. . . 322 18.3 Random Effects Model . . . . . . . 326 19 Binary Choice Models 32919.1 Binary Choice Model . . . . . . . 329 19.2 Truncated Regression Model . . . . .. . . 336 19.3 Censored Regression Model (Tobit Model) . . . . . . . 340 19.4 Heckit: Sample Selection Model . . . . . . . . 343 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明