| 所在主题: | |
| 文件名: Assessing the fit of small open economy DSGEs.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1518070.html | |
| 附件大小: | |
|
您好,我最近在研究DSGE,参考了Troy Matheson的《Assessing the fit of small open economy DSGEs》论文里的模型,加入了货币余额效用和ZF购买,遇到了很多问题,想请教老师们。
这是我在跑程序的时候出现的问题: Configuring Dynare ... [mex] Generalized QZ. [mex] Sylvester equation solution. [mex] Kronecker products. [mex] Sparse kronecker products. [mex] Local state space iteration (second order). [mex] Bytecode evaluation. [mex] k-order perturbation solver. [mex] k-order solution simulation. [mex] Quasi Monte-Carlo sequence (Sobol). [mex] Markov Switching SBVAR. Starting Dynare (version 4.4.2). Starting preprocessing of the model file ... Found 21 equation(s). Evaluating expressions...done Computing static model derivatives: - order 1 Computing dynamic model derivatives: - order 1 - order 2 Processing outputs ...done Preprocessing completed. Starting MATLAB/Octave computing. STEADY-STATE RESULTS: y 0 pi 0 pi_H 0 pi_N 0 mc_H 0 mc_N 0 a_H 0 a_N 0 c 0 e 0 q 0 s 0 p_N 0 r 0 ystar 0 rstar 0 pistar 0 g 0 Psi_F 0 pi_F 0 m 0 EIGENVALUES: Modulus Real Imaginary 0.4507 0.3787 0.2445 0.4507 0.3787 -0.2445 0.4906 0.4906 0 0.5 0.5 0 0.5 0.5 0 0.7071 0.625 0.3307 0.7071 0.625 -0.3307 0.72 0.6299 0.3487 0.72 0.6299 -0.3487 0.8 0.8 0 0.8 0.8 0 0.8 0.8 0 0.8 0.8 0 0.9318 0.9318 0 1.93 1.803 0.6868 1.93 1.803 -0.6868 2.02 2.02 0 2.276 2.276 0 Inf Inf 0 There are 5 eigenvalue(s) larger than 1 in modulus for 6 forward-looking variable(s) The rank condition ISN'T verified! Loading 72 observations from data_abc.m Error in computing likelihood for initial parameter values ESTIMATION_CHECKS: There was an error in computing the likelihood for initial parameter values. ESTIMATION_CHECKS: You should try using the calibrated version of the model as starting values. To do ESTIMATION_CHECKS: this, add an empty estimated_params_init-block with use_calibration option immediately before the estimation ESTIMATION_CHECKS: command (and after the estimated_params-block so that it does not get overwritten): Error using print_info (line 45) Blanchard Kahn conditions are not satisfied: indeterminacy Error in print_info (line 45) error(['Blanchard Kahn conditions are not satisfied:' ... Error in initial_estimation_checks (line 69) print_info(info, DynareOptions.noprint, DynareOptions) Error in dynare_estimation_1 (line 179) oo_ = initial_estimation_checks(objective_function,xparam1,dataset_,M_,estim_params_,options_,bayestopt_,oo_); Error in dynare_estimation (line 89) dynare_estimation_1(var_list,dname); Error in mme (line 410) dynare_estimation(var_list_); Error in dynare (line 180) evalin('base',fname) ; 这是我的程序: var y, pi, pi_H, pi_N, mc_H, mc_N, a_H, a_N, c, e, q, s, p_N, r, ystar, rstar, pistar, g, Psi_F, pi_F m; varexo epsilon_H, epsilon_N, epsilon_uip, epsilon_ystar, epsilon_pistar, epsilon_rstar, epsilon_g, epsilon_r; parameters bet, alpha, nu, eta, lambda, kappa, h, sigma, omega_H, omega_N, theta_H, theta_N, psi, rho_H, rho_N, rho_ystar, rho_pistar, rho_rstar, rho_g, omega_F, theta_F, rho_r, psi_a, psi_b, psi_c phi; bet = 0.99; alpha = 0.5; nu = 1; eta = 1; lambda = 0.5; h = 0.5; sigma = 2; omega_H = 0.5; omega_N = 0.5; theta_H = 0.5; theta_N = 0.5; psi = 1; kappa = 0.5; rho_H = 0.5; rho_N = 0.5; rho_ystar = 0.8; rho_pistar = 0.8; rho_rstar = 0.8; rho_g = 0.8; omega_F = 0.5; theta_F = 0.5; rho_r = 0.8; psi_a = 0.5; psi_b = 1.5; psi_c = 0.1; phi = 1; model; y = alpha*(lambda-1)*(eta+nu*lambda*alpha)*s+nu*lambda*alpha*(lambda-1)*p_N+(1-alpha+alpha*lambda)*c+alpha*(1-lambda)*ystar+alpha*eta*(1-lambda)*q+g; g=rho_g*g(-1)+epsilon_g; c = (h/(1+h))*c(-1)+(1/(1+h))*c(+1)-((1-h)/(sigma+sigma*h))*(r-pi(+1)); pi_H = (((1-omega_H)*(1-theta_H)*(1-bet*theta_H))/(theta_H+omega_H*(1-theta_H*(1-bet))))*mc_H+((bet*theta_H)/(theta_H+omega_H*(1-theta_H*(1-bet))))*pi_H(+1)+(omega_H/(theta_H+omega_H*(1-theta_H*(1-bet))))*pi_H(-1); pi_N = (((1-omega_N)*(1-theta_N)*(1-bet*theta_N))/(theta_N+omega_N*(1-theta_N*(1-bet))))*mc_N+((bet*theta_N)/(theta_N+omega_N*(1-theta_N*(1-bet))))*pi_N(+1)+(omega_N/(theta_N+omega_N*(1-theta_N*(1-bet))))*pi_N(-1); pi_F = (((1-omega_F)*(1-theta_F)*(1-bet*theta_F))/(theta_F+omega_F*(1-theta_F*(1-bet))))*Psi_F+((bet*theta_F)/(theta_F+omega_F*(1-theta_F*(1-bet))))*pi_F(+1)+(omega_F/(theta_F+omega_F*(1-theta_F*(1-bet))))*pi_F(-1); mc_H = (sigma/(1-h))*(c-h*c(-1))+psi*y-(psi*(1-lambda)+1)*a_H-psi*lambda*a_N+(lambda-1)*alpha*s+lambda*p_N; mc_N = (sigma/(1-h))*(c-h*c(-1))+psi*y-psi*(1-lambda)*a_H-(psi*lambda+1)*a_N+(lambda-1)*alpha*s+(lambda-1)*p_N; a_H = rho_H*a_H(-1)+epsilon_H; a_N = rho_N*a_N(-1)+kappa*epsilon_N; c = h*c(-1)+ystar-h*ystar(-1)+((1-h)/sigma)*q; r = rstar+e(+1)-e+epsilon_uip; s = s(-1)+pi_H-pi_F; q = Psi_F-(1-alpha*(1-lambda))*s-lambda*p_N; Psi_F = Psi_F(-1)+e+pistar-pi_F; pi = (1-lambda)*pi_H+lambda*pi_N-(1-lambda)*alpha*(s-s(-1)); ystar = rho_ystar*ystar(-1)+epsilon_ystar; pistar = rho_pistar*pistar(-1)+epsilon_pistar; rstar = rho_rstar*rstar(-1)+epsilon_rstar; r = rho_r*r(-1)+psi_a*y+psi_b*pi+psi_c*e+epsilon_r; m = (sigma*(c-h*c(-1)))/((1-h)*phi)-r/phi; end; initval; y=0; pi=0; pi_H=0; pi_N=0; mc_H=0; mc_N=0; a_H=0; a_N=0; c=0; e=0; q=0; s=0; p_N=0; r=0; ystar=0; rstar=0; pistar=0; g=0; Psi_F=0; pi_F=0; m = 0; epsilon_H=0; epsilon_N=0; epsilon_uip=0; epsilon_ystar=0; epsilon_pistar=0; epsilon_rstar=0; epsilon_g=0; epsilon_r=0; end; steady; check; shocks; var epsilon_H; stderr 0.01; var epsilon_N; stderr 0.01; var epsilon_uip; stderr 0.01; var epsilon_ystar; stderr 0.01; var epsilon_pistar; stderr 0.01; var epsilon_rstar; stderr 0.01; var epsilon_g; stderr 0.01; var epsilon_r; stderr 0.01; end; estimated_params; bet, beta_pdf, 0.99, 0.01; alpha, beta_pdf, 0.5, 0.1; nu, gamma_pdf, 1, 0.2; eta, gamma_pdf, 1, 0.2; lambda, beta_pdf, 0.5, 0.1; h, beta_pdf, 0.5, 0.1; sigma, gamma_pdf, 2, 0.5; omega_H, beta_pdf, 0.5, 0.1; omega_N, beta_pdf, 0.5, 0.1; theta_H, beta_pdf, 0.5, 0.1; theta_N, beta_pdf, 0.5, 0.1; psi, gamma_pdf, 1, 0.2; kappa, gamma_pdf, 0.5, 0.2; rho_H, beta_pdf, 0.8, 0.1; rho_N, beta_pdf, 0.8, 0.1; rho_ystar, beta_pdf, 0.8, 0.1; rho_pistar, beta_pdf, 0.8, 0.1; rho_rstar, beta_pdf, 0.8, 0.1; rho_g, beta_pdf, 0.8, 0.1; omega_F, beta_pdf, 0.5, 0.1; theta_F, beta_pdf, 0.5, 0.1; rho_r, beta_pdf, 0.8, 0.1; psi_a, gamma_pdf, 0.5, 0.1; psi_b, gamma_pdf, 1.5, 0.2; psi_c, gamma_pdf, 0.1, 0.05; phi, gamma_pdf, 1, 0.2; stderr epsilon_H, inv_gamma_pdf, 0.01, inf; stderr epsilon_N, inv_gamma_pdf, 0.01, inf; stderr epsilon_uip, inv_gamma_pdf, 0.01, inf; stderr epsilon_ystar, inv_gamma_pdf, 0.01, inf; stderr epsilon_pistar, inv_gamma_pdf, 0.01, inf; stderr epsilon_rstar, inv_gamma_pdf, 0.01, inf; stderr epsilon_g, inv_gamma_pdf, 0.01, inf; stderr epsilon_r, inv_gamma_pdf, 0.01, inf; end; varobs y s r pi pi_F e m; estimation(datafile=data_abc) y s r pi pi_F e m; 现在最直接的问题是我的BK条件不满足,特征值大于1的少了一个,之前看老师的帖子说是要重新校准,我也试了一些还是一样的错误,但我觉得会不会是我的方程有问题,直觉是其中有五个方程包含了六个预期变量。或者是我的方程有的是矛盾的?毕竟原文中的有些数学细节我感觉没那么准确。我想知道到底是校准的问题还是模型方程的问题呢? 对数线性化是参考原论文的,我就自然地把方程中所有变量都当做是对稳态的偏离百分比,所以我在处理数据时是把所有数据(对应于对数线性化之前)都进行了季节调整然后取对数然后H-P滤波。(这些都是为了是模型中变量与数据变量对应)。在处理利率r时,我用的7天同业拆借,r先加的1(为了使R=r+1)然后进行的季节调整然后取对数然后H-P滤波。pi是用的p-p(-1)。我想知道我可以这样对应处理吗(这样处理是想方程中所有变量的稳态都是零)?我还没看到有人会进行像我这样的处理。 我看有的文章是一部分参数进行校准,一部分参数进行贝叶斯估计,不过我觉得这样可能会错误,因为直觉不是在一个层次上考虑问题了。上面的错误提示我进行一部分参数校准,如果我仍然全用贝叶斯估计,这样可以吗?或者,怎样把参数校准和贝叶斯估计写在一个mod里,怎么指定呢?有参考的mod吗? 如果我利用贝叶斯估计完成了参数估计,那么我下面是不是就可以用后验均值,然后进行模拟得到IRF呢? |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明