| 所在主题: | |
| 文件名: Probability - Theory and Examples Durrett Apr 2013 edition.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1518203.html | |
| 附件大小: | |
|
Probability - Theory and Examples DurrettApr 2013 edition Contents 1 Measure Theory 1 1.1 Probability Spaces . . . .. . . . . . . 1 1.2 Distributions . . . . . . . .. . . . . . . . . 8 1.3 Random Variables . . . . . . . . . . . . 12 1.4 Integration . . . . . . . . .. . . . . . 15 1.5 Properties of the Integral . . .. . . . . . 21 1.6 Expected Value . . . . . . .. . . . . 24 1.6.1 Inequalities . . . . . . . . .. . . . 24 1.6.2 Integration to the Limit . . . . . . 25 1.6.3 Computing Expected Values . . . . . . 27 1.7 Product Measures, Fubini’s Theorem . . . .. 31 2 Laws of Large Numbers 37 2.1 Independence . . . . . . . . .. . . . 37 2.1.1 Sufficient Conditions for Independence . . . .. . . 38 2.1.2 Independence, Distribution, and Expectation . . .. . . 41 2.1.3 Sums of Independent Random Variables . . . . . . . . 42 2.1.4 Constructing Independent Random Variables . . . . 45 2.2 Weak Laws of Large Numbers . . . . . . . . . . 47 2.2.1 L2 Weak Laws . . . . . . . . . . . 472.2.2 Triangular Arrays . .. . . . . . . 50 2.2.3 Truncation . . . . . . . . . . . . . 52 2.3 Borel-Cantelli Lemmas . . . . .. . . . . 56 2.4 Strong Law of Large Numbers . . . . . . . . . 63 2.5 Convergence of Random Series* . . . .. . . . 68 2.5.1 Rates of Convergence . . .. . . . . . 71 2.5.2 Infinite Mean . . . . . . . . . . . . . 73 2.6 Large Deviations* . . . . . . . . . . 75 3 Central Limit Theorems 81 3.1 The De Moivre-Laplace Theorem . . .. . . . 81 3.2 Weak Convergence . . . . .. . . . . 83 3.2.1 Examples . . . . . . . . . . . 83 3.2.2 Theory . . . . . . . . . . . . . . 86 3.3 Characteristic Functions . . . . .. . . . . 91 3.3.1 Definition, Inversion Formula . . . . . . . . . 91 3.3.2 Weak Convergence . . . . . . . . . . . 97 3.3.3 Moments and Derivatives . . . . . . . 98 3.3.4 Polya’s Criterion* . . . . .. . . 101 iii iv CONTENTS3.3.5 The Moment Problem* . . . . .. . . . 103 3.4 Central Limit Theorems . . . . 106 3.4.1 i.i.d. Sequences . . .. 106 3.4.2 Triangular Arrays . . . . .. . . 110 3.4.3 Prime Divisors (Erd¨os-Kac)* . . . .. . 114 3.4.4 Rates of Convergence (Berry-Esseen)* . . .118 3.5 Local Limit Theorems* . . . . 121 3.6 Poisson Convergence . . . .. 126 3.6.1 The Basic Limit Theorem . . . . . . 126 3.6.2 Two Examples with Dependence . . .. 130 3.6.3 Poisson Processes . . .. 132 3.7 Stable Laws* . . . . . . . 135 3.8 Infinitely Divisible Distributions* . . .. 144 3.9 Limit Theorems in R d . .. . . . 1474 Random Walks 153 4.1 Stopping Times . . . . . 153 4.2 Recurrence . . . . . . . . 162 4.3 Visits to 0, Arcsine Laws* . . .. 172 4.4 Renewal Theory* . . . .. . 177 5 Martingales 189 5.1 Conditional Expectation .. . 189 5.1.1 Examples . . . . . 191 5.1.2 Properties . . . 193 5.1.3 Regular Conditional Probabilities* . . . .197 5.2 Martingales, Almost Sure Convergence . . . . 198 5.3 Examples . . .. . . . 204 5.3.1 Bounded Increments . . . . . 204 5.3.2 Polya’s Urn Scheme . . . . . . 205 5.3.3 Radon-Nikodym Derivatives . . . . . 206 5.3.4 Branching Processes . . .. . . 209 5.4 Doob’s Inequality, Convergence in Lp . . . . . 2125.4.1 Square Integrable Martingales* . .. . . 216 5.5 Uniform Integrability, Convergence in L1 . .. . 2205.6 Backwards Martingales . . . . . . 225 5.7 Optional Stopping Theorems . . . .. 229 6 Markov Chains 233 6.1 Definitions . . .. . . . 233 6.2 Examples . . . . . . . . 236 6.3 Extensions of the Markov Property . . . . . 240 6.4 Recurrence and Transience .. . . 245 6.5 Stationary Measures . . . .. . . 252 6.6 Asymptotic Behavior . . .. . 261 6.7 Periodicity, Tail -field* . . .. . 2666.8 General State Space* . . . .. . 270 6.8.1 Recurrence and Transience . . . 273 6.8.2 Stationary Measures . .. 274 6.8.3 Convergence Theorem . . 275 6.8.4 GI/G/1 queue . . .. 276 CONTENTS v7 Ergodic Theorems 279 7.1 Definitions and Examples .. . . 279 7.2 Birkhoff’s Ergodic Theorem . .. 283 7.3 Recurrence . . . . . . . 287 7.4 A Subadditive Ergodic Theorem* . 290 7.5 Applications* . . . . . 294 8 Brownian Motion 301 8.1 Definition and Construction . . .. 301 8.2 Markov Property, Blumenthal’s 0-1 Law . . 307 8.3 Stopping Times, Strong Markov Property . 312 8.4 Path Properites . . . .. 315 8.4.1 Zeros of Brownian Motion . . . . . 316 8.4.2 Hitting times . . . .. . 316 8.4.3 L´evy’s Modulus of Continuity . . . . . 319 8.5 Martingales . . . . . 320 8.5.1 Multidimensional Brownian Motion . . . . 324 8.6 Itˆo’s formula* . . . .. . 327 8.7 Donsker’s Theorem . . . . .333 8.8 CLT’s for Martingales* . . .340 8.9 Empirical Distributions, Brownian Bridge . . . . 346 8.10 Weak convergence* . . .. 351 8.10.1 The space C . . . .. . . 3518.10.2 The Space D . . . . . . . 353 8.11 Laws of the Iterated Logarithm* . .. 355 A Measure Theory Details 359 A.1 Carathe ’eodory’s Extension Theorem . . . 359 A.2 Which Sets Are Measurable? . . 364 A.3 Kolmogorov’s Extension Theorem . . . 366 A.4 Radon-Nikodym Theorem . .. . 368 A.5 Differentiating under the Integral . . . . . 371 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明