| 所在主题: | |
| 文件名: Data Analysis Using SAS Enterprise Guide.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1530502.html | |
| 附件大小: | |
|
This book presents the basic procedures for utilizing SAS Enterprise Guide to analyze
statistical data. SAS Enterprise Guide is a graphical user (point-and-click) interface to the main SAS application. Each chapter contains a brief conceptual overview and then guides the reader through concrete step-by-step examples to complete the analyses. The 11 sections of the book cover a wide range of statistical procedures, including descriptive statistics, correlation and simple regression, t tests, one-way chi-squares, data transformations, multiple regression, analysis of variance, analysis of covariance, multivariate analysis of variance, factor analysis, and canonical correlation analysis. Designed to be used as either a stand-alone resource or an accompaniment to a statistics course, the book offers a detailed path to statistical analysis with SAS Enterprise Guide for advanced undergraduate and beginning graduate students, as well as professionals in psychology, education, business, health, social work, sociology, and many other fields. Acknowledgments xix I Introducing SAS Enterprise Guide 1 SAS Enterprise Guide Projects 3 1.1 A brief history of SAS 3 1.2 Opening a project 4 1.3 The contents of projects 5 1.4 Navigating tabs in the Process Flow screen 9 1.5 The main SAS Enterprise Guide menu 10 1.6 Additional resources 12 2 Placing Data into SAS Enterprise Guide Projects 13 2.1 Overview 13 2.2 Entering data directly into SAS Enterprise Guide 13 2.3 Saving a project 19 2.4 Importing data from Excel 19 II Performing Analyses and Viewing Output 3 Performing Statistical Analyses in SAS Enterprise Guide 25 3.1 Overview 25 3.2 Numerical example 25 3.3 Selecting the procedure 25 3.4 Assigning Task roles 26 3.5 The Variables to assign and Task roles panels 28 3.6 Other choices in the navigation panel 28 3.7 Performing the analysis 31 4 Managing and Viewing Output 32 4.1 Overview 32 4.2 Numerical example 32 4.3 Specifying the output format 32 4.4 Examining the statistical results 35 4.5 Saving the output as a PDF document 38 III Manipulating Data 5 Sorting Data and Selecting Cases 43 5.1 Overview 43 5.2 Numerical example 43 5.3 Sorting data 43 5.3 Selecting cases 46 6 Recoding Existing Variables 53 6.1 Overview 53 6.2 Numerical example 54 6.3 Performing the recoding 54 7 Computing New Variables 63 7.1 Overview 63 7.2 Numerical example 63 7.3 Computing a new variable from an existent variable 64 7.4 Computing a new variable by combining several variables 69 IV Describing Data 8 Descriptive Statistics 77 8.1 Overview 77 8.2 Categories of descriptive statistics 77 8.3 Numerical example 79 8.4 Obtaining basic descriptive statistics for the quantitative variables 79 8.5 Obtaining skewness and kurtosis statistics 84 8.6 Obtaining frequency counts for the categorical variables 88 9 Graphing Data 91 9.1 Overview 91 9.2 Numerical example 91 9.3 Constructing bar charts 92 9.4 Constructing line plots 97 10 Standardizing Variables Based on the Sample Data 104 10.1 Overview 104 10.2 Numerical example 105 10.3 Obtaining standardized scores: z scores 105 10.3 Obtaining standardized scores: linear T scores 108 11 Standardizing Variables Based on Existing Norms 111 11.1 Overview 111 11.2 Numerical example 111 11.3 Setting up the computing process 112 11.4 Obtaining the standardized values 115 V Score Distribution Assumptions 12 Detecting Outliers 119 12.1 Overview 119 12.2 Specifying the boundary for an outlier 119 12.3 Numerical example 120 12.4 The box and whisker plot 121 12.5 Transforming values to z scores 123 12.6 Obtaining extreme values 124 13 Assessing Normality 130 13.1 Overview 130 13.2 The normality tests provided by SAS 130 13.3 Numerical example 131 13.4 Obtaining the normality assessments 131 14 Nonlinearly Transforming Variables in Order to Meet Underlying Assumptions 135 14.1 Overview 135 14.2 Notes on transformations 135 14.3 Examples of nonlinear transformations 136 14.4 Numerical example 137 14.5 Transformation strategy 138 14.6 Switch to Update mode 139 14.7 Setting up the computing process 140 14.8 Evaluating the effects of our transformations 148 VI Correlation and Prediction 15 Bivariate Correlation: Pearson Product–Moment and Spearman Rho Correlations 155 15.1 Overview 155 15.2 Some history 155 15.3 The two correlation coefficients of interest here 156 15.4 Numerical example 157 15.5 Setting up the correlation analysis 157 15.6 The correlation output 158 16 Simple Linear Regression 162 16.1 Overview 162 16.2 Naming the classes of variables 162 16.3 Numerical example 163 16.4 Setting up the regression solution 164 16.5 The regression output 166 17 Multiple Linear Regression 170 17.1 Overview 170 17.2 Numerical example 170 17.3 Viewing the correlations 171 17.4 Setting up the regression solution 172 17.5 The regression output 175 18 Simple Logistic Regression 177 18.1 Overview 177 18.2 Some differences between linear and logistic regression 177 18.3 Two notable features of logistic regression 178 18.4 Numerical example 178 18.5 Setting up the logistic regression solution 179 18.6 The logistic regression output 181 19 Multiple Logistic Regression 185 19.1 Overview 185 19.2 Coding of binary predictor variables 185 19.3 Numerical example 186 19.4 Setting up the logistic regression solution 186 19.5 The logistic regression output 188 VII Comparing Means: The t Test 20 Independent-Groups t Test 195 20.1 Overview 195 20.2 Some history 195 20.3 Numerical example 196 the effect 205 22 Single-Sample t Test 206 22.1 Overview 206 22.2 The general approach 206 22.3 Numerical example 207 22.4 Setting up the analysis 207 22.5 The t-test output 207 VIII Comparing Means: ANOVA 23 One-Way Between-Subjects ANOVA 213 23.1 Overview 213 23.2 Naming of ANOVA designs 213 23.3 Some history 214 23.4 Numerical example 215 23.5 Setting up the analysis 216 23.6 The ANOVA output 219 24 Two-Way Between-Subjects Design 223 24.1 Overview 223 24.2 Omnibus and simple effects analysis 224 24.3 Numerical example 224 24.4 Setting up the analysis 225 24.5 The ANOVA output 25 One-Way Within-Subjects ANOVA 238 25.1 Overview 238 25.2 Numerical example 238 25.3 The structure of the data set 239 25.4 Setting up the analysis 240 25.5 Output for the analysis 250 26 Two-Way Mixed ANOVA Design 253 26.1 Overview 253 26.2 The partitioning of the variance in a mixed design 253 26.3 Numerical example 254 26.4 Setting up the analysis 254 26.5 The ANOVA output 263 IX Nonparametric Procedures 27 One-Way Chi-Square 269 27.1 Overview 269 27.2 Numerical example 270 27.3 Setting up the analysis 271 27.4 The chi-square output 272 27.5 Comparing the two most preferred categories: analysis setup 274 27.6 Comparing the two most preferred categories: chi-square output 277 28 Two-Way Chi-Square 279 28.1 Overview 279 28.2 The issue of small frequency counts 280 28.3 Numerical example 282 28.4 Setting up the analysis 282 28.5 The chi-square output 284 29 Nonparametric Between-Subjects One-Way ANOVA 291 29.1 Overview 291 29.2 The nonparametric analogues to One-Way ANOVA 291 29.3 Numerical example 292 29.4 Setting up the analysis 292 29.5 Output of the analyses 293 X Advanced ANOVA Techniques 30 One-Way Between-Subjects Analysis of Covariance 299 30.1 Overview 299 30.2 Assumptions of ANCOVA 300 30.3 Numerical example 300 30.4 Evaluating the assumptions of ANCOVA 301 30.5 Setting up the ANCOVA 308 30.6 The ANCOVA output 310 31 One-Way Between-Subjects Multivariate Analysis of Variance 313 31.1 Overview 313 31.2 Univariate and multivariate ANOVA 313 31.3 Numerical example 314 31.4 Setting up the MANOVA 315 31.5 The MANOVA output 316 31.6 Follow-up analyses: setup 319 31.7 Follow-up analyses: output 322 XI Analysis of Structure 32 Factor Analysis 327 32.1 Overview 327 32.2 Some history 327 32.3 The basis of factor analysis 328 32.4 The extraction phase 328 32.5 The rotation phase 330 32.6 Numerical example 331 32.7 Setting up the factor analysis 333 32.8 The factor analysis output 337 33 Canonical Correlation Analysis 345 33.1 Overview 345 33.2 Canonical and linear regression 346 33.3 Number of canonical functions 346 33.4 Canonical and factor analysis 347 33.5 Numerical example 347 33.6 Setting up the Canonical Correlation Analysis 349 33.7 Output for Canonical Correlation Analysis 352 References 365 Author Index 371 Subject Index 373 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明