搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Stochastic_evolution_equations_with_fractional_Brownian_motion.pdf
资料下载链接地址: https://bbs.pinggu.org/a-1624529.html
附件大小:
303.88 KB   举报本内容

分数布朗运动(FBM)及其在金融中的应用文献5




[hide]



[/hide]








A normalized fractional Brownian motion (fBm), also called a fractal Brownian motion, is a generalization ofBrownian motion without independent increments. It is a continuous-time Gaussian process BH(t) on [0, T], which starts at zero, has expectation zero for all t in [0, T], and has the following covariance function:

.

where H is a real number in (0, 1), called the Hurst index or Hurst parameter associated with the fractional Brownian motion. The Hurst exponent describes the raggedness of the resultant motion, with a higher value leading to a smoother motion. It was introduced by Mandelbrot & van Ness (1968).


The value of H determines what kind of process the fBm is:if H = 1/2 then the process is in fact a Brownian motion or Wiener process;if H > 1/2 then the increments of the process are positively correlated;if H < 1/2 then the increments of the process are negatively correlated.The increment process,X(t) = BH(t+1) − BH(t), is known as fractional Gaussian noise.

Prior to the introduction of the fractional Brownian motion,Lévy (1953) used the Riemann–Liouville fractional integral to define the process:

Where integration is with respect to the white noise measure dB(s). This integral turns out to be ill-suited to applications of fractional Brownian motion.The idea instead is to use a different fractional integral of white noise to define the process: the Weyl integral


The main difference between fractional Brownian motion and regular Brownian motion is that while the increments in Brownian Motion are independent.








    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2025-12-24 17:28