| 所在主题: | |
| 文件名: abc.xls | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1671980.html | |
| 附件大小: | |
|
各位老师好。
小弟 学习R软件 的使用 遇到一个问题:关于HSROC程序包的使用问题 2.1 Data preparation After having installed the package, the library can be loaded with the following command : > library(HSROC) The data on MR imaging is included in the library and can be loaded as follows : > data(MRI) > MRI ++ +- -+ -- 1 9 2 2 44 2 3 6 5 32 3 3 2 1 16 4 3 1 12 44 5 1 1 6 16 6 7 2 22 167 3 7 12 4 4 29 8 23 5 14 230 9 8 5 5 53 10 16 2 2 22 The columns ++; +-; -+; -- represent the results of the cross tabulation between MRI (the test under evaluation) and histologic/cytologic specimens obtained by surgery or lymph node biopsy (reference test). The colummn headings ++; +􀀀; 􀀀+; 􀀀􀀀 correspond to (MRI +, reference +), (MRI +, reference -), (MRI -, reference +) and (MRI -, reference -), respectively. In order to estimate the parameters of the conditional independence model, we use the function HSROC. The arguments论据 of the function are as follows : (init初始化,null 零) > args(HSROC) function (data, iter.num, init = NULL, sub_rs = NULL, first.run = TRUE, path = getwd(), refresh = 100, prior.SEref = NULL, prior.SPref = NULL, prior_PI = c(0, 1), prior_LAMBDA = c(-3, 3), prior_THETA = c(-1.5, 1.5), prior_sd_alpha = list(0, 2, "sd"), prior_sd_theta = list(0, 2, "sd"), prior_beta = c(-0.75, 0.75)) > init.alpha = c(2.51, 2.54, 3.81, 2.41, 2.64, 2.70, 3.31, 3.39, 3.11, 2.99) > init.theta = c(-0.51, -0.39, 0.33, -2.06, -0.14, -0.08, 1.11, 0.38, -0.86, +-0.38) > init.s1 = rep(0.9,10) > init.c1 = rep(0.9,10) > init.pi = c(0.38, 0.17, 0.78, 0.07, 0.74, 0.84, 0.52, 0.95, 0.07, 0.56) > init_within = cbind(init.alpha, init.theta, init.s1, init.c1, init.pi) > init_within = cbind(init.theta, init.alpha, init.s1, init.c1, init.pi) > init.THETA = -0.16 > init.sig.theta = 0.75 > init.LAMBDA = 2.58 > init.sig.alpha = 0.5 > init.beta = 0.25 > init_between = c(init.THETA, init.sig.theta, init.LAMBDA, init.sig.alpha, init.beta) > init = list(init_within, init_between) > HSROC(data=MRI, iter.num=50000, init=init ) > args(HSROCSummary) function (data, burn_in = 0, iter.keep = NULL, Thin = 1, sub_rs = NULL, point_estimate = c("median", "mean"), summary.path = getwd(), chain = getwd(), tv = NULL, digit = 6, print_plot = FALSE, plot.ind.studies = TRUE, conf_region = TRUE, predict_region = TRUE, col.pooled.estimate = "red", col.predict.region = "blue", lty.conf.region = "dotdash", lty.predict.region = "dotted", region_level = 0.95, trunc_low = 0.025, trunc_up = 0.025) For our example, we call the function as follows : > HSROCSummary(data = MRI, burn_in=10000, Thin=2, print_plot=TRUE ) > dir.create("C:/MRI/Chain1") > HSROC(data=MRI, iter.num=50000, init=init, path="C:/MRI/Chain1" ) > dir.create("C:/MRI/Chain2") > HSROC(data=MRI, iter.num=50000, init=init2, path="C:/MRI/Chain2" ) > dir.create("C:/MRI/Chain3") > HSROC(data=MRI, iter.num=50000, init=init3, path="C:/MRI/Chain3" ) > HSROCSummary(data = MRI, burn_in=10000, Thin=2, print_plot=TRUE, + path="C:/MRI/All_Chains", chain=list("C:/MRI/Chain1","C:/MRI/Chain2", + "C:/MRI/Chain3") ) 小弟试过能复制以上命令,但是小弟现在想 自己运行自己的数据,我把数据呈上。命名为abc,希望哪位大哥能够演示一下 使用自己的外部数据的整个过程。 谢谢 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明