| 所在主题: | |
| 文件名: Partial Differential Equations_ An Introduction to Theory and Applications.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1783859.html | |
| 附件大小: | |
|
【2015新书】Partial Differential Equations: An Introduction to Theory and Applications
Book 图书名称:Partial Differential Equations: An Introduction to Theory and Applications Author 作者:Michael Shearer, Rachel Levy Publisher 出版社:Michael Shearer, Rachel Levy Page 页数:299 Publishing Date 出版时间:Mar, 2015 Language 语言:English/简体中文 Size 大小:14MB Format 格式:pdf文字版 ISBN:9780691161297, 9781400866601 Edition: 第1版搜索过论坛,没有该文档 This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green’s functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors Michael Shearer is professor of mathematics at North Carolina State University. He is a fellow of the American Mathematical Society. Rachel Levy is associate professor of mathematics at Harvey Mudd College. She is a recipient of the 2013 Henry L. Alder Award for Distinguished Teaching by a Beginning College or University Mathematics Faculty Member and creator of the Grandma Got STEM project. == Table of contents == Preface ix 1. Introduction 1 1.1. Linear PDE 2 1.2. Solutions; Initial and Boundary Conditions 3 1.3. Nonlinear PDE 4 1.4. Beginning Examples with Explicit Wave-like Solutions 6 Problems 8 2. Beginnings 11 2.1. Four Fundamental Issues in PDE Theory 11 2.2. Classification of Second-Order PDE 12 2.3. Initial Value Problems and the Cauchy-Kovalevskaya Theorem 17 2.4. PDE from Balance Laws 21 Problems 26 3. First-OrderPDE 29 3.1. The Method of Characteristics for Initial Value Problems 29 3.2. The Method of Characteristics for Cauchy Problems in Two Variables 32 3.3. The Method of Characteristics in R n 35 3.4. Scalar Conservation Laws and the Formation of Shocks 38 Problems 40 4. TheWaveEquation 43 4.1. The Wave Equation in Elasticity 43 4.2. D’Alembert’s Solution 48 4.3. The Energy E(t) and Uniqueness of Solutions 56 4.4. Duhamel’s Principle for the Inhomogeneous Wave Equation 57 4.5. The Wave Equation on R 2 and R 3 59 Problems 61 5. TheHeatEquation 65 5.1. The Fundamental Solution 66 5.2. The Cauchy Problem for the Heat Equation 68 5.3. The Energy Method 73 5.4. The Maximum Principle 75 5.5. Duhamel’s Principle for the Inhomogeneous Heat Equation 77 Problems 78 6. SeparationofVariablesandFourierSeries 81 6.1. Fourier Series 81 6.2. Separation of Variables for the Heat Equation 82 6.3. Separation of Variables for the Wave Equation 91 6.4. Separation of Variables for a Nonlinear Heat Equation 93 6.5. The Beam Equation 94 Problems 96 7. EigenfunctionsandConvergenceofFourierSeries 99 7.1. Eigenfunctions for ODE 99 7.2. Convergence and Completeness 102 7.3. Pointwise Convergence of Fourier Series 105 7.4. Uniform Convergence of Fourier Series 108 7.5. Convergence in L 2 110 7.6. Fourier Transform 114 Problems 117 8. Laplace’sEquationandPoisson’sEquation 119 8.1. The Fundamental Solution 119 8.2. Solving Poisson’s Equation in R n 120 8.3. Properties of Harmonic Functions 122 8.4. Separation of Variables for Laplace’s Equation 125 Problems 130 9. Green’sFunctionsandDistributions 133 9.1. Boundary Value Problems 133 9.2. Test Functions and Distributions 136 9.3. Green’s Functions 144 Problems 149 10. FunctionSpaces 153 10.1. Basic Inequalities and Definitions 153 10.2. Multi-Index Notation 157 10.3. Sobolev Spaces W k,p (U) 158 Problems 159 11. EllipticTheorywithSobolevSpaces 161 11.1. Poisson’s Equation 161 11.2. Linear Second-Order Elliptic Equations 167 Problems 173 12. TravelingWaveSolutionsofPDE 175 12.1. Burgers’ Equation 175 12.2. The Korteweg-deVries Equation 176 12.3. Fisher’s Equation 179 12.4. The Bistable Equation 181 Problems 186 13. ScalarConservationLaws 189 13.1. The Inviscid Burgers Equation 189 13.2. Scalar Conservation Laws 196 13.3. The Lax Entropy Condition Revisited 201 13.4. Undercompressive Shocks 204 13.5. The (Viscous) Burgers Equation 206 13.6. Multidimensional Conservation Laws 208 Problems 211 14. SystemsofFirst-OrderHyperbolicPDE 215 14.1. Linear Systems of First-Order PDE 215 14.2. Systems of Hyperbolic Conservation Laws 219 14.3. The Dam-Break Problem Using Shallow Water Equations 239 14.4. Discussion 241 Problems 242 15. TheEquationsofFluidMechanics 245 15.1. The Navier-Stokes and Stokes Equations 245 15.2. The Euler Equations 247 Problems 250 AppendixA.Multivariable Calculus 253 AppendixB.Analysis 259 AppendixC.Systems of Ordinary Differential Equations 263 References 265 Index 269 == 回帖见免费下载 == [hide] [/hide] 声明: 本资源仅供学术研究参考之用,发布者不负任何法律责任,敬请下载者支持购买正版。 提倡免费分享! 我发全部免费的,分文不收 来看看 ... 你也可关注我马上加关注 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明