| 所在主题: | |
| 文件名: Data Science with R Decision Trees.rar | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1811841.html | |
本附件包括:
|
|
| 附件大小: | |
|
Data Science with R Decision Trees Decision trees are widely used in data mining and well supported in R (R Core Team, 2014). Decision tree learning deploys a divide and conquer approach, known as recursive partitioning. It is usually implemented as a greedy search using information gain or the Gini index to select the best input variable on which to partition our dataset at each step.This Module introduces rattle (Williams, 2014) and rpart (Therneau and Atkinson, 2014) for building decision trees. We begin with a step-by-step example of building a decision tree using Rattle, and then illustrate the process using R begining with Section 14. We cover both classification trees and regression trees. The required packages for this module include:
As we work through this chapter, new R commands will be introduced. Be sure to review the command’s documentation and understand what the command does. You can ask for help using the ? command as in: ?read.csv We can obtain documentation on a particular package using the help= option of library(): library(help=rattle) This chapter is intended to be hands on. To learn effectively, you are encouraged to have R running (e.g., RStudio) and to run all the commands as they appear here. Check that you get the same output, and you understand the output. Try some variations. Explore. [hide][/hide]
|
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明