| 所在主题: | |
| 文件名: The Fokker-Planck Equation_ Methods of Solution and Applications-Springer Berlin.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-1835088.html | |
| 附件大小: | |
|
This is the first textbook to include the matrix continued-fraction method, which is very effective in dealing with simple Fokker-Planck equations having two variables. Other methods covered are the simulation method, the eigen-function expansion, numerical integration, and the variational method. Each solution is applied to the statistics of a simple laser model and to Brownian motion in potentials. The whole is rounded off with a supplement containing a short review of new material together with some recent references. This new study edition will prove to be very useful for graduate students in physics, chemical physics, and electrical engineering, as well as for research workers in these fields.
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Brownian Motion .......................................... 1 1.2 Fokker-Planck Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Boltzmann Equation ....................................... 9 1.4 Master Equation .......................................... 11 2. Probability Theory ............................................ 13 2.1 Random Variable and Probability Density. . . . . . . . . . . . . . . . . . . . . 13 2.2 Characteristic Function and Cumulants ....................... 16 2.3 Generalization to Several Random Variables... . . .. . . .. . . . .. . . . 19 2.4 Time-Dependent Random Variables. . . .. . ... . . ... . . .. ... . . . .. 25 2.5 Several Time-Dependent Random Variables ................... 30 3. Langevin Equations ........................................... 32 3.1 Langevin Equation for Brownian Motion ............. '" . . ... . 32 3.2 Ornstein-Uhlenbeck Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 Nonlinear Langevin Equation, One Variable .................. 44 3.4 Nonlinear Langevin Equations, Several Variables.. . . . . . . . . .. . . 54 3.5 Markov Property. . . . . . . . . . . .. . . . ... .. . . . . .... . . .. . . . .. . .. 59 3.6 Solutions of the Langevin Equation by Computer Simulation . . . . 60 4. Fokker-Planck Equation ....................................... 63 4.1 Kramers-Moyal Forward Expansion.. . . . . .. . . . . . . .. . . . . .. . . . 63 4.1.1 Formal Solution .................................... 66 4.2 Kramers-Moyal Backward Expansion . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3 Pawula Theorem ......................................... 70 4.4 Fokker-Planck Equation for One Variable. . . . . . . . . . . . . . . . . . . . 72 4.5 Generation and Recombination Processes .................... 76 4.6 Application of Truncated Kramers-Moyal Expansions . . . . . . . . . . 77 4.7 Fokker-Planck Equation for NVariables ..................... 81 4.8 Examples for Fokker-Planck Equations with Several Variables. . . 86 4.9 Transformation of Variables ............................... 88 4.10 Covariant Form of the Fokker-Planck Equation ............... 91 5. Fokker-Planck Equation for One Variable; Methods of Solution. . . . . . 96 5.1 Normalization ........................................... 96 5.2 Stationary Solution ....................................... 98 5.3 Ornstein-UWenbeck Process ...... , ............. '" .. . . ... . . 99 5.4 Eigenfunction Expansion .................................. 101 5.5 Examples................................................ 108 5.5.1 Parabolic Potential ................................. 108 5.5.2 Inverted Parabolic Potential ......................... 109 5.5.3 Infinite Square Well for the SchrOdinger Potential. . . . . . . 110 5.5.4 V-Shaped Potentialfor the Fokker-Planck Equation. . ... 111 5.6 Jump Conditions ......................................... 112 5.7 A Bistable Model Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5.8 Eigenfunctions and Eigenvalues of Inverted Potentials ......... 117 5.9 Approximate and Numerical Methods for Determining Eigenvalues and Eigenfunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 5.9.1 Variational Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.9.2 Numerical Integration .............................. 120 5.9.3 Expansion into a Complete Set ....................... 121 5.10 ' Diffusion Over a Barrier ................................... 122 5.10.1 Kramers' Escape Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 5.10.2 Bistable and Metastable Potential. . . . . . . . . . . . . . . . . . . . . 125 6. Fokker-Planck Equation for Several Variables; Methods of Solution " 133 6.1 Approach ofthe Solutions to a Limit Solution. . . . . . .. . . . . . . . . . 134 6.2 Expansion into a Biorthogonal Set .......................... 137 6.3 Transformation of the Fokker-Planck Operator, Eigenfunction Expansions .............................................. 139 6.4 Detailed Balance ......................................... 145 6.5 Ornstein-Uhlenbeck Process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 6.6 Further Methods for Solving the Fokker-Planck Equation ...... 158 6.6.1 Transformation of Variables ......................... 158 6.6.2 Variational Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.6.3 Reduction to an Hermitian Problem. . . . . . . . . . . . . . . . . . . 159 6.6.4 Numerical Integration .............................. 159 6.6.5 Expansion into a Complete Set ....................... 159 6.6.6 Matrix Continued-Fraction Method. . . . . . . . .. . . . . . . . . . 160 6.6.7 WKB Method...................................... 162 7. Linear Response and Correlation Functions ....................... 163 7.1 Linear Response Function ................................. 164 7.2 Correlation Functions ..................................... 166 7.3 Susceptibility ............................................ 172 8. Reduction of the Number of Variables ...................... . . . . . . 179 8.1 First-Passage Time Problems ............................... 179 8.2 Drift and Diffusion Coefficients Independent of Some Variables 183 8.2.1 Time Integrals of Markovian Variables ................ 184 8.3 Adiabatic Elimination of Fast Variables ..................... 188 8.3.1 Linear Process with Respect to the Fast Variable ....... 192 8.3.2 Connection to the Nakajima-Zwanzig Projector Formalism ....................................... 194 9. Solutions of Tridiagonal Recurrence Relations, Application to Ordinary and Partial Differential Equations .............................. 196 9.1 Applications and Forms of Tridiagonal Recurrence Relations . .. 197 9.1.1 Scalar Recurrence Relation ......................... 197 9.1.2 Vector Recurrence Relation. . . . . . . . . . . . . . . . . . . . . . . . . 199 9.2 Solutions of Scalar Recurrence Relations .................... 203 9.2.1 Stationary Solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 203 9.2.2 Initial Value Problem .............................. 209 9.2.3 Eigenvalue Problem ............................... 214 9.3 Solutions of Vector Recurrence Relations . . . . . . . . . . . . . . . . . . . . 216 9.3.1 InitialValueProblem .............................. 217 9.3.2 Eigenvalue Problem ............................... 220 9.4 Ordinary and Partial Differential Equations with Multiplicative Harmonic Time-Dependent Parameters ..................... 222 9.4.1 Ordinary Differential Equations ..................... 222 9.4.2 Partial Differential Equations ....................... 225 9.5 Methods for Calculating Continued Fractions. . . . . . . . . . . . . . .. 226 9.5.1 Ordinary Continued Fractions. . . . . . . . . . . . . . . . . . . . . .. 226 9.5.2 Matrix Continued Fractions. . . . . . . . . . . . . . . . . . . . . . . .. 227 10. Solutions of the Kramers Equation .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 10.1 Forms ofthe Kramers Equation. . . . . . . . . . . . . . . . . . . . . . . . . . .. 229 10.1.1 Normalization of Variables ......................... 230 10.1.2 Reversible and Irreversible Operators. . . . . . . . . . . . . . . . . 231 10.1.3 Transformation of the Operators .................... 233 10.1.4 Expansion into Hermite Functions ................... 234 10.2 Solutions for a Linear Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 237 10.2.1 Transition Probability ............................. 238 10.2.2 Eigenvalues and Eigenfunctions ..................... 241 10.3 Matrix Continued-Fraction Solutions of the Kramers Equation. 249 10.3.1 Initial Value Problem .............................. 251 10.3.2 Eigenvalue Problem ............................... 255 10.4 Inverse Friction Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 10.4.1 Inverse Friction Expansion for Ko(t), Go,o(t) and Lo(t) . . 259 10.4.2 Determination of Eigenvalues and Eigenvectors. . . . . . .. 266 10.4.3 Expansion for the Green's Function Gn,m(t) ........... 268 10.4.4 Position-Dependent Friction ........................ 275 11. Brownian Motion in Periodic Potentials ......................... 276 11.1 Applications ............................................ 280 11.1.1 Pendulum........................................280 11.1.2 Superionic Conductor. . . . . . . . . . . . . . . . .. . . . . . . . . . . .. 280 11.1.3 Josephson Tunneling Junction ...................... 281 11.1.4 Rotation of Dipoles in aConstant Field ............... 282 11.1.5 Phase-Locked Loop ............................... 283 11.1.6 Connection to the Sine-Gordon Equation ............. 285 11.2 Normalization ofthe Langevin and Fokker-Planck Equations .. 286 11.3 High-Friction Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 287 11.3.1 Stationary Solution .... . . . . . . . . . . . . . . . . . . . . . . . . . . .. 287 11.3.2 Time-Dependent Solution .......................... 294 11.4 Low-Friction Limit ...................................... 300 11.4.1 Transformation to E and x Variables ................. 301 11.4.2 'Ansatz' for the Stationary Distribution Functions . . . . .. 304 11.4.3 x-Independent Functions ........................... 306 11.4.4 x-Dependent Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 307 11.4.5 Corrected x-Independent Functions and Mobility . . . . . . . 310 11.5 Stationary Solutions for Arbitrary Friction .................. 314 11. 5.1 Periodicity of the Stationary Distribution Function ..... 315 11.5.2 MatrixContinued-FractionMethod .................. 317 11.5.3 Calculation of the Stationary Distribution Function .... 320 11.5.4 Alternative Matrix Continued Fraction for the Cosine Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325 11.6 Bistability between Running and Locked Solution ............ 328 11.6.1 Solutions Without Noise ........................... 329 11.6.2 Solutions With Noise .............................. 334 11.6.3 Low-Friction Mobility With Noise ................... 335 11. 7 Instationary Solutions .................................... 337 11.7.1 Diffusion Constant ................................ 342 11.7.2 Transition Probability for Large Times ............... 343 11.8 Susceptibilities .......................................... 347 11.8.1 Zero-Friction Limit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 355 11.9 Eigenvalues and Eigenfunctions. . . . . . . . . . . . . . . . . . . . . . . . . . .. 359 11.9.1 Eigenvalues and Eigenfunctions in the Low-Friction Limit 365 12. Statistical Properties of Laser Light ............................. 374 12.1 Semiclassical Laser Equations ............................. 377 12.1.1 Equations Without Noise. . . . . . . . . . . . . . . . . . . . . . . . . .. 377 12.1.2 Langevin Equation ................................ 379 12.1.3 LaserFokker-PlanckEquation ...................... 382 12.2 Stationary Solution and Its Expectation Values. . . . . . . . . . . . . .. 384 12.3 Expansion in Eigenmodes ................................. 387 12.4 Expansion into a Complete Set; Solution by Matrix Continued Fractions ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394 12.4.1 Determination of Eigenvalues ....................... 396 12.5 Transient Solution ....................................... 398 12.5.1 EigenfunctionMethod ............................. 398 12.5.2 Expansion into a Complete Set ...................... 401 12.5.3 Solution for Large Pump Parameters. . . . . . . . . . . . . . . .. 404 12.6 Photoelectron Counting Distribution ....................... 408 12.6.1 Counting Distribution for Short Intervals ........... ~. 409 12.6.2 Expectation Values for Arbitrary Intervals ............ 412 Appendices ..................................................... 414 A1 Stochastic Differential Equations with Colored Gaussian Noise 414 A2 Boltzmann Equation with BGK and SW Collision Operators ... 420 A3 Evaluation of a Matrix Continued Fraction for the Harmonic Oscillator .............................................. 422 A4 Damped Quantum-Mechanical Harmonic Oscillator .......... 425 A5 Alternative Derivation ofthe Fokker-Planck Equation ........ 429 A6 Fluctuating Control Parameter ............................ 431 References ...................................................... 436 Subject Index ................................................... 445 Fokker-Planck方程在物理学各个领域中有广泛的应用,如Fokker-Planck方程在核物理、粒子物理、量子物理、计算物理中的应用;在金融领域,Fokker-Planck方程常用于描述随机过程,在金融工程中有广泛的应用;著名的Black-Scholes-Merton模型即可以理解为Fokker-Planck方程的一个具体应用;此书之前论坛上有DJVU格式的,现上传pdf格式。 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明