搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  189002.pdf
资料下载链接地址: https://bbs.pinggu.org/a-189002.html
附件大小:
1014.48 KB   举报本内容
<p>首先是个回归和方差分析的应用类教材,举例是用R软件来实现的.</p><p>Contents<br/>1 Introduction 8<br/>1.1 Before you start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>1.1.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br/>1.1.2 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br/>1.1.3 Initial Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br/>1.2 When to use Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br/>1.3 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br/>2 Estimation 16<br/>2.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br/>2.2 Linear Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br/>2.3 Matrix Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.4 Estimating b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br/>2.5 Least squares estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br/>2.6 Examples of calculating ˆb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br/>2.7 Why is ˆb a good estimate? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br/>2.8 Gauss-Markov Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br/>2.9 Mean and Variance of ˆb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br/>2.10 Estimating s2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br/>2.11 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br/>2.12 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br/>3 Inference 26<br/>3.1 Hypothesis tests to compare models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br/>3.2 Some Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br/>3.2.1 Test of all predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br/>3.2.2 Testing just one predictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br/>3.2.3 Testing a pair of predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br/>3.2.4 Testing a subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32<br/>3.3 Concerns about Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br/>3.4 Confidence Intervals for b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36<br/>3.5 Confidence intervals for predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39<br/>3.6 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41<br/>3.7 Identifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br/>3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>3.9 What can go wrong? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>3.9.1 Source and quality of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46</p><p>3.9.2 Error component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br/>3.9.3 Structural Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47<br/>3.10 Interpreting Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>4 Errors in Predictors 55<br/>5 Generalized Least Squares 59<br/>5.1 The general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br/>5.2 Weighted Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br/>5.3 Iteratively Reweighted Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br/>6 Testing for Lack of Fit 65<br/>6.1 s2 known . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br/>6.2 s2 unknown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br/>7 Diagnostics 72<br/>7.1 Residuals and Leverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72<br/>7.2 Studentized Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74<br/>7.3 An outlier test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br/>7.4 Influential Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78<br/>7.5 Residual Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br/>7.6 Non-Constant Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83<br/>7.7 Non-Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br/>7.8 Assessing Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88<br/>7.9 Half-normal plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91<br/>7.10 Correlated Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92<br/>8 Transformation 95<br/>8.1 Transforming the response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br/>8.2 Transforming the predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br/>8.2.1 Broken Stick Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98<br/>8.2.2 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100<br/>8.3 Regression Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br/>8.4 Modern Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104<br/>9 Scale Changes, Principal Components and Collinearity 106<br/>9.1 Changes of Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106<br/>9.2 Principal Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107<br/>9.3 Partial Least Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113<br/>9.4 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117<br/>9.5 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120<br/>10 Variable Selection 124<br/>10.1 Hierarchical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124<br/>10.2 Stepwise Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br/>10.2.1 Forward Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br/>10.2.2 Stepwise Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126<br/>10.3 Criterion-based procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128</p><p>10.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133<br/>11 Statistical Strategy and Model Uncertainty 134<br/>11.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134<br/>11.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br/>11.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br/>12 Chicago Insurance Redlining - a complete example 138<br/>13 Robust and Resistant Regression 150<br/>14 Missing Data 156<br/>15 Analysis of Covariance 160<br/>15.1 A two-level example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161<br/>15.2 Coding qualitative predictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164<br/>15.3 A Three-level example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165<br/>16 ANOVA 168<br/>16.1 One-Way Anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br/>16.1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br/>16.1.2 Estimation and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168<br/>16.1.3 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169<br/>16.1.4 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171<br/>16.1.5 Multiple Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172<br/>16.1.6 Contrasts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177<br/>16.1.7 Scheff&acute;e’s theorem for multiple comparisons . . . . . . . . . . . . . . . . . . . . . . 177<br/>16.1.8 Testing for homogeneity of variance . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br/>16.2 Two-Way Anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br/>16.2.1 One observation per cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br/>16.2.2 More than one observation per cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br/>16.2.3 Interpreting the interaction effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180<br/>16.2.4 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184<br/>16.3 Blocking designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185<br/>16.3.1 Randomized Block design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185<br/>16.3.2 Relative advantage of RCBD over CRD . . . . . . . . . . . . . . . . . . . . . . . . 190<br/>16.4 Latin Squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191<br/>16.5 Balanced Incomplete Block design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195<br/>16.6 Factorial experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200<br/>A Recommended Books 204<br/>A.1 Books on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204<br/>A.2 Books on Regression and Anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204<br/>B R functions and data 205<br/>CONTENTS 7<br/>C Quick introduction to R 207<br/>C.1 Reading the data in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207<br/>C.2 Numerical Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207<br/>C.3 Graphical Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209<br/>C.4 Selecting subsets of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209<br/>C.5 Learning more about R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210</p><br/>


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-10 19:34