搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解.zip
资料下载链接地址: https://bbs.pinggu.org/a-1960243.html
本附件包括:
  • 同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解.exe
附件大小:
339.55 KB   举报本内容
<br /><br/><br /><p><span style="font-family:宋体;"><span style="font-size:9pt;">封面<br />
内容简介<br />
目录</span></span><br />
<span style="color:blue;"><span style="font-family:宋体;"><span style="font-size:9pt;">第一章函数与极限</span></span></span><br />
<span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">1.1</span></span></span><span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">复习笔记<br />
1.2</span>课后习题详解</span></span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-1</span>映射与函数</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-2</span>数列的极限</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-3</span>函数的极限</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-4</span>无穷小与无穷大</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-5</span>极限运算法则</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-6</span>极限存在准则两个重要极限</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-7</span>无穷小的比较</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-8</span>函数的连续性与间断点</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-9</span>连续函数的运算与初等函数的连续性</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题1-10</span>闭区间上连续函数的性质</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">总习题一</span></span><br />
<span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">1.3<span style="font-size:9pt;">考研真题详解</span></span></span></span><br />
<span style="color:blue;"><span style="font-family:宋体;"><span style="font-size:9pt;">第二章导数与微分</span></span></span><br />
<span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">2.1<span style="font-size:9pt;">复习笔记<br />
2.2</span>课后习题详解</span></span></span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题2-1</span>导数概念</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题2-2</span>函数的求导法则</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题2-3</span>高阶导数</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题2-4</span>隐函数及由参数方程所确定的函数的导数相关变化率</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题2-5</span>函数的微分</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">总习题二</span></span><br />
<span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">2.3<span style="font-size:9pt;">考研真题详解</span></span></span></span><br />
<span style="color:blue;"><span style="font-family:宋体;"><span style="font-size:9pt;">第三章微分中值定理与导数的应用</span></span></span><br />
<span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">3.1<span style="font-size:9pt;">复习笔记<br />
3.2</span>课后习题详解</span></span></span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题3-1</span>微分中值定理</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题3-2</span>洛必达法则</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题3-3</span>泰勒公式</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题3-4</span>函数的单调性与曲线的凹凸性</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题3-5</span>函数的极值与最大值最小值</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题3-6</span>函数图形的描绘</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题3-7</span>曲率</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题3-8</span>方程的近似解</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">总习题三</span></span><br />
<span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">3.3<span style="font-size:9pt;">考研真题详解</span></span></span></span><br />
<span style="color:blue;"><span style="font-family:宋体;"><span style="font-size:9pt;">第四章不定积分</span></span></span><br />
<span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">4.1<span style="font-size:9pt;">复习笔记<br />
4.2</span>课后习题详解</span></span></span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题4-1</span>不定积分的概念与性质</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题4-2</span>换元积分法</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题4-3</span>分部积分法</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题4-4</span>有理函数的积分</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题4-5</span>积分表的使用</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">总习题四</span></span><br />
<span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">4.3<span style="font-size:9pt;">考研真题详解</span></span></span></span><br />
<span style="color:blue;"><span style="font-family:宋体;"><span style="font-size:9pt;">第五章定积分</span></span></span><br />
<span style="color:#006400;"><span style="font-family:宋体;"><span style="font-size:9pt;">5.1<span style="font-size:9pt;">复习笔记<br />
5.2</span>课后习题详解</span></span></span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题5-1</span>定积分的概念与性质</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题5-2</span>微积分基本公式</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题5-3</span>定积分的换元法和分部积分法</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题5-4</span>反常积分</span><br />
<span style="font-family:宋体;"><span style="font-size:9pt;">习题5-5</span>反常积分的审敛法</br></br>


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2025-12-30 20:44