| 所在主题: | |
| 文件名: allvar.rar | |
| 资料下载链接地址: https://bbs.pinggu.org/a-2003396.html | |
本附件包括:
|
|
| 附件大小: | |
|
一套数据出的三套题目,一点头绪都没有,目前只做出了第一大题第一小题……部分原因是英语太差……求高手指导……至少给点,思路,谢谢。数据已经附件上传
第一大题我试着写了下, 可是后两个小题一直报错…… ####################Chapter11 exercise4(1)################### allvar <- read.csv("H:/software/RStudio/files/allvar.csv") HIV<-na.omit(allvar); HIV; time<-HIV$visage-HIV$baseage HIV<-cbind(HIV,time); for (i in 1:4) {plot(time[HIV$newpid==i],HIV$CD4PCT[HIV$newpid==i],xlab="time",ylab="CD4 percentage",type ="b") } ####################Chapter11 exercise4(2)################### child<-0 MAX<-max(HIV$newpid); for (i in 1:MAX){child<-lm(HIV$CD4PCT[HIV$newpid==i]~HIV$time[HIV$newpid==i]) } child1<-lm(HIV$CD4PCT[HIV$newpid==1]~HIV$time[HIV$newpid==1]); child2<-lm(HIV$CD4PCT[HIV$newpid==2]~HIV$time[HIV$newpid==2]); child1 ####################Chapter11 exercise4(3)################### #step1 treatment<-0 for (i in 1:MAX) {treatment<-lm(HIV$CD4PCT[HIV$newpid==i]~HIV$treatmnt[HIV$newpid==i]+HIV$visage[HIV$newpid==i]} 11.7 The folder cd4 has CD4 percentages for a set of young children with HIV who were measured several times over a period of two years. The dataset also includes the ages of the children at each measurement. (a) Graph the outcome (the CD4 percentage, on the square root scale) for each child as a function of time. (b) Each child’s data has a time course that can be summarized by a linear fit. Estimate these lines and plot them for all the children. (c) Set up a model for the children’s slopes and intercepts as a function of the treatment and age at baseline. Estimate this model using the two-step procedure–first estimate the intercept and slope separately for each child, then fit the between-child models using the point estimates from the first step. 12.2 (a) Write a model predicting CD4 percentage as a function of time with varying intercepts across children. Fit using lmer() and interpret the coefficient for time. (b) Extend the model in (a) to include child-level predictors (that is, group-level predictors) for treatment and age at baseline. Fit using lmer() and interpret the coefficients on time, treatment, and age at baseline. (c) Investigate the change in partial pooling from (a) to (b) both graphically and numerically. (d) Compare results in (b) to those obtained in part (c). 13.4 (a) Extend the model in Exercise 12.2 to allow for varying slopes for the time predictor. (b) Next fit a model that does not allow for varying slopes but does allow for different coefficients for each time point (rather than fitting the linear trend). (c) Compare the results of these models both numerically and graphically. |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明