|
|
| 所在主题:
|
|
文件名: pca-master.zip |
|
资料下载链接地址: https://bbs.pinggu.org/a-2057110.html
|
| 附件大小:
|
- ml-pca
- NPM versionbuild statusDavid depsnpm download
- Principal component analysis (PCA)
- Installation
- $ npm install ml-pca
- Methods
- new PCA(dataset, options)
- Arguments
- dataset - Data to get the PCA. It must be a two-dimensional array with observations as rows and variables as columns.
- Options
- center - Center the dataset (default: true)
- scale - Standardize the dataset, i.e. divide by the standard deviation after centering (default: false)
- predict(dataset)
- Project the dataset in the PCA space
- Arguments
- dataset - A Matrix of the dataset to project.
- getExplainedVariance()
- Returns the percentage of variance explained by each component.
- getCumulativeVariance()
- Returns the cumulative explained variance.
- getStandardDeviations()
- Returns the standard deviations of each component.
- getEigenvectors()
- Get the eigenvectors of the covariance matrix.
- getEigenvalues()
- Get the eigenvalues on the diagonal.
- getLoadings()
- Get the loadings matrix (each row is a component and each column is a variable)
- License
复制代码[hide][/hide]
|
熟悉论坛请点击新手指南
|
| 下载说明 |
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
|