搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  som-master.zip
资料下载链接地址: https://bbs.pinggu.org/a-2057113.html
附件大小:
10.19 KB   举报本内容
ml-som

self-organizing map (SOM) / Kohonen network

Installation

$ npm install ml-som

Methodsnew SOM(x, y, [options])

Creates a new SOM instance with x * y dimensions.

Arguments

  • x - Dimension of the x axis
  • y - Dimension of the y axis
  • options - Object with options for the algorithm

Options

  • fields - Either a number (size of input vectors) or a map of field descriptions (to convert them to vectors)
  • iterations - Number of iterations over the training set for the training phase (default: 10). The total number of training steps will be iterations * trainingSet.length
  • learningRate - Multiplication coefficient for the learning algorithm (default: 0.1)
  • method - Iteration method of the learning algorithm (default: random)
    • random - Pick an object of the training set randomly
    • traverse - Go sequentially through the training set
  • randomizer - Function that must give numbers between 0 and 1 (default: Math.random)
  • distance - Function that computes the distance between two vectors of the same length (default: squared Euclidean distance)
  • gridType - Shape of the grid (default: rect)
    • rect - Rectangular grid
    • hexa - Hexagonal grid
  • torus - Boolean indicating if the grid should be considered a torus for the selection of the neighbors (default: true)

Example

var SOM = require('ml-som');var options = {fields: { r: [0, 255], g: [0, 255], b: [0, 255]}};var som = new SOM(20, 20, options);
train(trainingSet)

Train the SOM with the provided trainingSet.

Arguments

  • trainingSet - Array of training elements. If the fields was a number, each array element must be a normalized vector. If it was an object, each array element must be an object with at least the described properties, within the described ranges

Example

var trainingSet = [{ r: 0, g: 0, b: 0 },{ r: 255, g: 0, b: 0 },{ r: 0, g: 255, b: 0 },{ r: 0, g: 0, b: 255 },{ r: 255, g: 255, b: 255 }];som.train(trainingSet);
getConvertedNodes()

Returns a 2D array containing the nodes of the grid, in the structure described by the fields option.

setTraining(trainingSet)

Set the training set for use with the next method

trainOne()

Executes the next training iteration and returns true. Returns false if the training is over. Useful to draw the grid or compute some things after each learning step.

Example

som.setTraining(trainingSet);while(som.trainOne()) {var nodes = som.getConvertedNodes();// do something with the nodes}
predict([data], [computePosition])

Returns for each data point the coordinates of the corresponding best matching unit (BMU) on the grid

Arguments

  • data - Data point or array of data points (default: training set).
  • computePosition - True if you want to compute the position of the point in the cell, using the direct neighbors (default: false). This option is currently only implemented for rectangular grids.

Example

// create and train the somvar result1 = som.predict({ r: 45, g: 209, b: 100 });// result1 = [ 2, 26 ]var result2 = som.predict([{ r: 45, g: 209, b: 100 }, { r: 155, g: 22, b: 12 }], true);// result2 = [ [ 2, 26, [ 0.236, 0.694 ] ], [ 33, 12, [ 0.354, 0.152 ] ] ]
getFit([dataset])

Returns an array of fit values which are the square root of the distance between the input vector and its corresponding BMU.

Arguments

  • dataset - Array of vectors to for which to calculate fit values. Defaults to the training set.
getQuantizationError()

Returns the mean of the fit values for the training set. This number can be used to compare several runs of the same SOM.

getUMatrix()

Returns a 2D array representing the grid. Each value is the mean of the distances between the corresponding node and its direct neighbors. Currently only available for square nodes

export()

Exports the model to a JSON object that can be written to disk and reloaded

SOM.load(model, [distanceFunction])

Returns a new SOM instance based on the model. If the model was created with a custom distance function, the distanceargument should be this function.

Arguments

  • model - JSON object generated with som.export()
  • distanceFunction - Optionally provide the distance function used to create the model.
License

MIT


[hide][/hide]




    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-12 03:55