| 所在主题: | |
| 文件名: 机器学习和模式识别-翻译.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-2070736.html | |
| 附件大小: | |
|
PRML是模式识别和机器学习领域的经典著作,出版于2007年。该书作者 Christpher M. Bishop 是模式识别和机器学习领域的大家,其1995年所著的“Nerual Networks for Pattern Recognition”也是模式识别、人工神经网络领域的经典著作。
PRML深入浅出地介绍了模式识别与机器学习的基本理论和主要方法,同时还涵盖了模式识别与机器学习领域的一些最新进展,不仅适合初学者学习,而且对专业研究人员也有很大的参考价值。 书评参考 实际上这本书我花了将近两个月的时间读下来,不敢说有多理解,但是确实收获很大,分章做一个评论。 第1章的导论,不多说,看完书后需要重新回过头来看看。 第2章的概率分布,写的非常好,尽管只有几个简单的分布,但是对共轭先验的概念以及指数分布族介绍的很清楚,这一章是本书的基矗 第3章以及第4章的线性分类和回归一个非常好的方面就是都是采用Bayesisan的观点来看,应该是理解Baysian思想的基矗 第5章 我没看,直接略过。(基本不影响后面的阅读) 第6章 讲Guassian Process (这个东西后来我才知道是 一种非参数的Bayessian方法,现在在统计学领域研究的很热门。) 第7章 讲SVM 。 第8章 是现代基于图模型的基础,需要仔细阅读,这一章概念介绍的非常清楚,很多的machine learning 和computer vision 的paper 现在采用的图模型的表示都可以从这里得到解释。 第9章 EM 算法,本人认为是本书的一个亮点,从最简单的K-mean出发,推导高斯混合模型,再到EM算法的推广,本章每一节都是精品。 第10章 近似推断 主要就是第一节的近似推断的基本原理 以及第二节的一个例子。采用mean-field、变分的方法。 第11章 采样,写的很精彩,对完全不懂采样的我来说,也能很快入门。这里需要说明的是,我的收获主要来自于第8章到第11章,光看书是不行的,期间,我主要是学习了最基本的Topic model:LDA 。在学习LDA的过程中,第8章到第11章的完全用上了。这种感觉非常好。推荐给大家。 第12章是PCA及一些改进,用到的时候再看也来得及。 第13章是HMM 模型和LDS,这两个的图模型是一样的。建议好好学习一下HMM,应该还有其他的资料供参考。 第14章最后是整合,很多东西现在我还不是很理解。 总之,这是一本非常好的书,关键是写作思路清晰,重点突出。作为阅读论文的基本参考物是值得推荐的。 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明