搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  210684.pdf
资料下载链接地址: https://bbs.pinggu.org/a-210684.html
附件大小:
[UserCP=5]<p>Quantile Regression&nbsp;&nbsp; <br/></p><p>Roger Koenker &nbsp; <br/>University of Illinois &nbsp; <br/></p><p>Contents &nbsp; <br/>viii &nbsp;Contents &nbsp; <br/>&nbsp;Inference for Quantile Regression &nbsp;68 &nbsp; <br/>&nbsp;3.1 The Finite-Sample Distribution of Regression Quantiles &nbsp;68 &nbsp; <br/>&nbsp;3.2 Heuristic Introduction to Quantile Regression &nbsp;&nbsp; <br/>&nbsp;Asymptotics &nbsp;71 &nbsp; <br/>&nbsp;3.2.1 &nbsp;Confidence Intervals for the Sample Quantiles &nbsp;72 &nbsp; <br/>&nbsp;3.2.2 &nbsp;Quantile Regression Asymptotics with IID Errors &nbsp;73 &nbsp; <br/>&nbsp;3.2.3 &nbsp;Quantile Regression Asymptotics in Non-IID &nbsp;&nbsp; <br/>&nbsp;Settings &nbsp;74 &nbsp; <br/>&nbsp;3.3 Wald Tests &nbsp;75 &nbsp; <br/>&nbsp;3.3.1 &nbsp;Two-Sample Tests of Location Shift &nbsp;75 &nbsp; <br/>&nbsp;3.3.2 &nbsp;General Linear Hypotheses &nbsp;76 &nbsp; <br/>&nbsp;3.4 Estimation of Asymptotic Covariance Matrices &nbsp;77 &nbsp; <br/>&nbsp;3.4.1 &nbsp;Scalar Sparsity Estimation &nbsp;77 &nbsp; <br/>&nbsp;3.4.2 &nbsp;Covariance Matrix Estimation in Non-IID Settings &nbsp;79 &nbsp; <br/>&nbsp;3.5 Rank-Based Inference &nbsp;81 &nbsp; <br/>&nbsp;3.5.1 &nbsp;Rank Tests for Two-Sample Location Shift &nbsp;81 &nbsp; <br/>&nbsp;3.5.2 &nbsp;Linear Rank Statistics &nbsp;84 &nbsp; <br/>&nbsp;3.5.3 &nbsp;Asymptotics of Linear Rank Statistics &nbsp;85 &nbsp; <br/>&nbsp;3.5.4 &nbsp;Rank Tests Based on Regression Rankscores &nbsp;87 &nbsp; <br/>&nbsp;3.5.5 &nbsp;Confidence Intervals Based on Regression &nbsp;&nbsp; <br/>&nbsp;&nbsp;Rankscores &nbsp;91 &nbsp; <br/>&nbsp;3.6 Quantile Likelihood Ratio Tests &nbsp;92 &nbsp; <br/>&nbsp;3.7 Inference on the Quantile Regression Process &nbsp;95 &nbsp; <br/>&nbsp;3.7.1 &nbsp;Wald Processes &nbsp;97 &nbsp; <br/>&nbsp;3.7.2 &nbsp;Quantile Likelihood Ratio Processes &nbsp;98 &nbsp; <br/>&nbsp;3.7.3 &nbsp;The Regression Rankscore Process Revisited &nbsp;98 &nbsp; <br/>&nbsp;3.8 Tests of the Location-Scale Hypothesis &nbsp;98 &nbsp; <br/>&nbsp;3.9 Resampling Methods and the Bootstrap &nbsp;105 &nbsp; <br/>&nbsp;3.9.1 &nbsp;Bootstrap Refinements, Smoothing, and &nbsp;&nbsp; <br/>&nbsp;Subsampling &nbsp;107 &nbsp; <br/>&nbsp;3.9.2 &nbsp;Resampling on the Subgradient Condition &nbsp;108 &nbsp; <br/>&nbsp;3.10 Monte Carlo Comparison of Methods &nbsp;110 &nbsp; <br/>&nbsp;3.10.1 Model 1: Location-Shift Model &nbsp;111 &nbsp; <br/>&nbsp;3.10.2 Model 2: Location–Scale-Shift Model &nbsp;112 &nbsp; <br/>&nbsp;3.11 Problems &nbsp;113 &nbsp; <br/>&nbsp;Asymptotic Theory of Quantile Regression &nbsp;116 &nbsp; <br/>&nbsp;4.1 Consistency &nbsp;117 &nbsp; <br/>4.1.1 &nbsp;Univariate Sample Quantiles &nbsp;117 &nbsp; <br/>4.1.2 &nbsp;Linear Quantile Regression &nbsp;118 &nbsp; <br/>4.2 Rates of Convergence &nbsp;120 &nbsp; <br/>4.3 Bahadur Representation &nbsp;122 &nbsp; <br/>4.4 Nonlinear Quantile Regression &nbsp;123 &nbsp; <br/>4.5 The Quantile Regression Rankscore Process &nbsp;124 &nbsp; <br/>4.6 Quantile Regression Asymptotics under Dependent &nbsp;&nbsp; <br/>Conditions &nbsp;126 &nbsp; <br/>&nbsp;Contents &nbsp;&nbsp; <br/>&nbsp;6.4.3 &nbsp;Interior vs. Exterior: Computational &nbsp;&nbsp; <br/>&nbsp;Comparison &nbsp;202 &nbsp; <br/>&nbsp;6.4.4 &nbsp;Computational Complexity &nbsp;204 &nbsp; <br/>&nbsp;6.5 Preprocessing for Quantile Regression &nbsp;206 &nbsp; <br/>&nbsp;6.5.1 &nbsp;“Selecting” Univariate Quantiles &nbsp;207 &nbsp; <br/>&nbsp;6.5.2 &nbsp;Implementation &nbsp;207 &nbsp; <br/>&nbsp;6.5.3 &nbsp;Confidence Bands &nbsp;208 &nbsp; <br/>&nbsp;6.5.4 &nbsp;Choosing &nbsp;209 &nbsp; <br/>&nbsp;6.6 Nonlinear Quantile Regression &nbsp;211 &nbsp; <br/>&nbsp;6.7 Inequality Constraints &nbsp;213 &nbsp; <br/>&nbsp;6.8 Weighted Sums of ρτ -Functions &nbsp;214 &nbsp; <br/>&nbsp;6.9 Sparsity &nbsp;216 &nbsp; <br/>&nbsp;6.10 Conclusion &nbsp;220 &nbsp; <br/>&nbsp;6.11 Problems &nbsp;220 &nbsp; <br/>&nbsp;Nonparametric Quantile Regression &nbsp;222 &nbsp; <br/>&nbsp;7.1 Locally Polynomial Quantile Regression &nbsp;222 &nbsp; <br/>&nbsp;7.1.1 &nbsp;Average Derivative Estimation &nbsp;226 &nbsp; <br/>&nbsp;7.1.2 &nbsp;Additive Models &nbsp;228 &nbsp; <br/>&nbsp;7.2 Penalty Methods for Univariate Smoothing &nbsp;229 &nbsp; <br/>&nbsp;7.2.1 &nbsp;Univariate Roughness Penalties &nbsp;229 &nbsp; <br/>&nbsp;7.2.2 &nbsp;Total Variation Roughness Penalties &nbsp;230 &nbsp; <br/>&nbsp;7.3 Penalty Methods for Bivariate Smoothing &nbsp;235 &nbsp; <br/>&nbsp;7.3.1 &nbsp;Bivariate Total Variation Roughness Penalties &nbsp;235 &nbsp; <br/>&nbsp;7.3.2 &nbsp;Total Variation Penalties for Triograms &nbsp;236 &nbsp; <br/>&nbsp;7.3.3 &nbsp;Penalized Triogram Estimation as Linear &nbsp;&nbsp; <br/>&nbsp;&nbsp;Program &nbsp;240 &nbsp; <br/>&nbsp;7.3.4 &nbsp;On Triangulation &nbsp;241 &nbsp; <br/>&nbsp;7.3.5 &nbsp;On Sparsity &nbsp;242 &nbsp; <br/>&nbsp;7.3.6 &nbsp;Automatic Selection &nbsp;242 &nbsp; <br/>&nbsp;7.3.7 &nbsp;Boundary and Qualitative Constraints &nbsp;243 &nbsp; <br/>&nbsp;7.3.8 &nbsp;Model of Chicago Land Values &nbsp;243 &nbsp; <br/>&nbsp;7.3.9 &nbsp;Taut Strings and Edge Detection &nbsp;246 &nbsp; <br/>&nbsp;7.4 Additive Models and the Role of Sparsity &nbsp;&nbsp;248 &nbsp; <br/>&nbsp;Twilight Zone of Quantile Regression &nbsp;&nbsp;250 &nbsp; <br/>&nbsp;8.1 Quantile Regression for Survival Data &nbsp;&nbsp;250 &nbsp; <br/>8.1.1 &nbsp;Quantile Functions or Hazard Functions? &nbsp;&nbsp;252 &nbsp; <br/>8.1.2 &nbsp;Censoring &nbsp;&nbsp;253 &nbsp; <br/>8.2 Discrete Response Models &nbsp;&nbsp;255 &nbsp; <br/>8.2.1 &nbsp;Binary Response &nbsp;255 &nbsp; <br/>8.2.2 &nbsp;Count Data &nbsp;259 &nbsp; <br/>8.3 Quantile Autoregression &nbsp;260 &nbsp; <br/>8.3.1 &nbsp;Quantile Autoregression and Comonotonicity &nbsp;261 &nbsp; <br/>8.4 Copula Functions and Nonlinear Quantile Regression &nbsp;265 &nbsp; <br/>8.4.1 &nbsp;Copula Functions &nbsp;265 &nbsp; <br/></p><p>Contents &nbsp;xi &nbsp; <br/>8.5 High-Breakdown Alternatives to Quantile Regression &nbsp;268 &nbsp; <br/>8.6 Multivariate Quantiles &nbsp;272 &nbsp; <br/>8.6.1 &nbsp;The Oja Median and Its Extensions &nbsp;273 &nbsp; <br/>8.6.2 &nbsp;Half-Space Depth and Directional Quantile &nbsp;&nbsp; <br/>Regression &nbsp;275 &nbsp; <br/>8.7 Penalty Methods for Longitudinal Data &nbsp;276 &nbsp; <br/>8.7.1 &nbsp;Classical Random Effects as Penalized &nbsp;&nbsp; <br/>Least Squares &nbsp;276 &nbsp; <br/>8.7.2 &nbsp;Quantile Regression with Penalized Fixed Effects &nbsp;278 &nbsp; <br/>8.8 Causal Effects and Structural Models &nbsp;281 &nbsp; <br/>8.8.1 &nbsp;Structural Equation Models &nbsp;281 &nbsp; <br/>8.8.2 &nbsp;Chesher’s Causal Chain Model &nbsp;283 &nbsp; <br/>8.8.3 &nbsp;Interpretation of Structural Quantile Effects &nbsp;284 &nbsp; <br/>8.8.4 &nbsp;Estimation and Inference &nbsp;285 &nbsp; <br/>8.9 Choquet Utility, Risk, and Pessimistic Portfolios &nbsp;287 &nbsp; <br/>&nbsp;8.9.1 &nbsp;Choquet Expected Utility &nbsp;287 &nbsp; <br/>&nbsp;8.9.2 &nbsp;Choquet Risk Assessment &nbsp;289 &nbsp; <br/>&nbsp;8.9.3 &nbsp;Pessimistic Portfolios &nbsp;291 &nbsp; <br/>&nbsp;Conclusion &nbsp;&nbsp;293 &nbsp; <br/>&nbsp;Quantile Regression in R: Vignette &nbsp;295 &nbsp; <br/>&nbsp;A.Introduction &nbsp;295 &nbsp; <br/>&nbsp;A.What Is Vignette? &nbsp;296 &nbsp; <br/>&nbsp;A.Getting Started &nbsp;296 &nbsp; <br/>&nbsp;A.Object Orientation &nbsp;298 &nbsp; <br/>&nbsp;A.Formal Inference &nbsp;299 &nbsp; <br/>&nbsp;A.More on Testing &nbsp;305 &nbsp; <br/>&nbsp;A.Inference on the Quantile Regression Process &nbsp;307 &nbsp; <br/>&nbsp;A.Nonlinear Quantile Regression &nbsp;308 &nbsp; <br/>&nbsp;A.Nonparametric Quantile Regression &nbsp;310 &nbsp; <br/>&nbsp;A.10 Conclusion &nbsp;316 &nbsp; <br/>&nbsp;Asymptotic Critical Values &nbsp;317 &nbsp; <br/>&nbsp;References &nbsp;319 &nbsp; <br/>&nbsp;Name Index &nbsp;337 &nbsp; <br/>&nbsp;Subject Index &nbsp;342 &nbsp; <br/></p><br/>[/UserCP]


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-19 17:09