| 所在主题: | |
| 文件名: mix model splus and R.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-2156488.html | |
| 附件大小: | |
|
I Linear Mixed-Effects Models 1 1 Linear Mixed-Effects Models 3 1.1 A Simple Example of Random Effects . . . . . . . . . . . . 4 1.1.1 Fitting the Random-Effects Model With lme . . . . 8 1.1.2 Assessing the FittedModel . . . . . . . . . . . . . . 11 1.2 A Randomized Block Design . . . . . . . . . . . . . . . . . 12 1.2.1 Choosing Contrasts for Fixed-Effects Terms . . . . . 14 1.2.2 Examining theModel . . . . . . . . . . . . . . . . . 19 1.3 Mixed-Effects Models for Replicated, Blocked Designs . . . 21 1.3.1 Fitting Random Interaction Terms . . . . . . . . . . 23 1.3.2 Unbalanced Data . . . . . . . . . . . . . . . . . . . . 25 1.3.3 More General Models for the Random Interaction Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1.4 An Analysis of CovarianceModel . . . . . . . . . . . . . . . 30 1.4.1 Modeling Simple Linear Growth Curves . . . . . . . 30 1.4.2 Predictions of the Response and the Random Effects 37 1.5 Models for Nested Classification Factors . . . . . . . . . . . 40 1.5.1 Model Building forMultilevelModels . . . . . . . . 44 1.6 A Split-Plot Experiment . . . . . . . . . . . . . . . . . . . . 45 1.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 52 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 xii Contents 2 Theory and Computational Methods for LME Models 57 2.1 The LMEModel Formulation . . . . . . . . . . . . . . . . . 58 2.1.1 Single Level of Grouping . . . . . . . . . . . . . . . . 58 2.1.2 AMultilevel LMEModel . . . . . . . . . . . . . . . 60 2.2 Likelihood Estimation for LMEModels . . . . . . . . . . . 62 2.2.1 The Single-Level LME Likelihood Function . . . . . 62 2.2.2 Orthogonal-Triangular Decompositions . . . . . . . . 66 2.2.3 Evaluating the Likelihood Through Decompositions 68 2.2.4 Components of the Profiled Log-Likelihood . . . . . 71 2.2.5 Restricted Likelihood Estimation . . . . . . . . . . . 75 2.2.6 Multiple Levels of Random Effects . . . . . . . . . . 77 2.2.7 Parameterizing Relative Precision Factors . . . . . . 78 2.2.8 Optimization Algorithms . . . . . . . . . . . . . . . 79 2.3 Approximate Distributions . . . . . . . . . . . . . . . . . . . 81 2.4 Hypothesis Tests and Confidence Intervals . . . . . . . . . . 82 2.4.1 Likelihood Ratio Tests . . . . . . . . . . . . . . . . . 83 2.4.2 Hypothesis Tests for Fixed-Effects Terms . . . . . . 87 2.4.3 Confidence Intervals . . . . . . . . . . . . . . . . . . 92 2.5 Fitted Values and Predictions . . . . . . . . . . . . . . . . . 94 2.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 94 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 3 Describing the Structure of Grouped Data 97 3.1 The Display Formula and Its Components . . . . . . . . . . 97 3.2 Constructing groupedData Objects . . . . . . . . . . . . . . 101 3.2.1 Roles of Other Experimental or Blocking Factors . . 104 3.2.2 Constructors for Balanced Data . . . . . . . . . . . . 108 3.3 Controlling Trellis Graphics Presentations of Grouped Data 110 3.3.1 Layout of the Trellis Plot . . . . . . . . . . . . . . . 110 3.3.2 Modifying the Vertical and Horizontal Scales . . . . 113 3.3.3 Modifying the Panel Function . . . . . . . . . . . . . 114 3.3.4 Plots ofMultiply-Nested Data . . . . . . . . . . . . 116 3.4 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 130 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 4 Fitting Linear Mixed-Effects Models 133 4.1 Fitting Linear Models in S with lm and lmList . . . . . . . 134 4.1.1 The lmList Function . . . . . . . . . . . . . . . . . 139 4.2 Fitting Linear Mixed-Effects Models with lme . . . . . . . . 146 4.2.1 Fitting Single-LevelModels . . . . . . . . . . . . . . 146 4.2.2 Patterned Variance–Covariance Matrices for the Random Effects: The pdMat Classes . . . . . . . . . 157 4.2.3 FittingMultilevelModels . . . . . . . . . . . . . . . 167 4.3 Examining a FittedModel . . . . . . . . . . . . . . . . . . . 174 Contents xiii 4.3.1 Assessing Assumptions on the Within-Group Error . 174 4.3.2 Assessing Assumptions on the Random Effects . . . 187 4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 196 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 5 Extending the Basic Linear Mixed-Effects Model 201 5.1 General Formulation of the ExtendedModel . . . . . . . . . 202 5.1.1 Estimation and Computational Methods . . . . . . . 202 5.1.2 The GLS model . . . . . . . . . . . . . . . . . . . . . 203 5.1.3 Decomposing the Within-Group Variance–Covariance Structure . . . . . . . . . . . . . . . . . . . . . . . . 205 5.2 Variance Functions forModeling Heteroscedasticity . . . . . 206 5.2.1 varFunc classes in nlme . . . . . . . . . . . . . . . . 208 5.2.2 Using varFunc classes with lme . . . . . . . . . . . . 214 5.3 Correlation Structures for Modeling Dependence . . . . . . 226 5.3.1 Serial Correlation Structures . . . . . . . . . . . . . 226 5.3.2 Spatial Correlation Structures . . . . . . . . . . . . . 230 5.3.3 corStruct classes in nlme . . . . . . . . . . . . . . . 232 5.3.4 Using corStruct Classes with lme . . . . . . . . . . 239 5.4 Fitting Extended Linear Models with gls . . . . . . . . . . 249 5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 266 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 II Nonlinear Mixed-Effects Models 271 6 NLME Models: Basic Concepts and Motivating Examples 273 6.1 LMEModels vs. NLMEModels . . . . . . . . . . . . . . . . 273 6.2 Indomethicin Kinetics . . . . . . . . . . . . . . . . . . . . . 277 6.3 Growth of Soybean Plants . . . . . . . . . . . . . . . . . . . 287 6.4 Clinical Study of Phenobarbital Kinetics . . . . . . . . . . . 294 6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 300 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301 7 Theory and Computational Methods for NLME Models 305 7.1 The NLMEModel Formulation . . . . . . . . . . . . . . . . 306 7.1.1 Single-Level of Grouping . . . . . . . . . . . . . . . . 306 7.1.2 Multilevel NLMEModels . . . . . . . . . . . . . . . 309 7.1.3 Other NLMEModels . . . . . . . . . . . . . . . . . . 310 7.2 Estimation and Inference in NLMEModels . . . . . . . . . 312 7.2.1 Likelihood Estimation . . . . . . . . . . . . . . . . . 312 7.2.2 Inference and Predictions . . . . . . . . . . . . . . . 322 7.3 Computational Methods . . . . . . . . . . . . . . . . . . . . 324 7.4 Extending the Basic NLMEModel . . . . . . . . . . . . . . 328 xiv Contents 7.4.1 Generalmodel formulation . . . . . . . . . . . . . . 328 7.4.2 Estimation and Computational Methods . . . . . . . 329 7.5 An Extended Nonlinear RegressionModel . . . . . . . . . . 332 7.5.1 GeneralModel Formulation . . . . . . . . . . . . . . 333 7.5.2 Estimation and Computational Methods . . . . . . . 334 7.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . 336 8 Fitting Nonlinear Mixed-Effects Models 337 8.1 Fitting Nonlinear Models in S with nls and nlsList . . . . 338 8.1.1 Using the nls Function . . . . . . . . . . . . . . . . 338 8.1.2 Self-Starting NonlinearModel Functions . . . . . . . 342 8.1.3 Separate Nonlinear Fits by Group: The nlsList Function . . . . . . . . . . . . . . . . . . . . . . . . . 347 8.2 Fitting Nonlinear Mixed-Effects Models with nlme . . . . . 354 8.2.1 Fitting Single-Level nlmeModels . . . . . . . . . . . 354 8.2.2 Using Covariates with nlme . . . . . . . . . . . . . . 365 8.2.3 Fitting Multilevel nlmeModels . . . . . . . . . . . . 385 8.3 Extending the Basic nlmeModel . . . . . . . . . . . . . . . 391 8.3.1 Variance Functions in nlme . . . . . . . . . . . . . . 391 8.3.2 Correlation Structures in nlme . . . . . . . . . . . . 395 8.3.3 Fitting Extended Nonlinear Regression Models with gnls . . . . . . . . . . . . . . . . . . . . . . . . 401 8.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明