| 所在主题: | |
| 文件名: 2016年数据科学从业者薪酬报告.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-2167872.html | |
| 附件大小: | |
|
O’Reilly 近日发布了数据科学从业者薪酬报告(2016 Data Science Salary Survey),分析了来自45个国家的近千份调查报告后,针对数据科学从业者使用的工具、薪酬待遇等问题进行了详细分析解读,并从调查结果中得到一些有趣的结论。 比如,Python和Spark成为了对数据分析从业者薪酬贡献最高的两大工具;在所有的编程从业者中,每周编程时间越久的人薪水越高;SQL,Excel,R和Python成为了调查者中被使用频度最高的工具。 在这份报告中,你可以找到以下亮点内容:
根据调查结果,O’Reilly 发现了以下有趣的结论:
*注:所有调查结果基于O’Reilly 的调查问卷回馈 报告作者John King、Roger Magoulas
在所有接受调查的从业者中,基本薪酬的中数是$87k。 按照国家分布来看,亚洲、非洲数据科学从业者的薪酬中数最低,美国最高。
超过85%接受调查的数据科学从业者,每周工作时长不低于40小时。 而薪酬中数并没有随工作时长一直上升,在51-55h出现了最高值。
调查报告中,使用频率最高的两种工具是Excel和SQL,其次是R和Python。和去年相比,Excel的使用频率从59%上升到了69%,R从52%上升到了57%。 超过90%的调查者反馈,他们会花一些时间写代码,80%的调查者使用Python,R还有Java中的一种,只有8%的调查者会同时使用这三种工具。 而不同的编程语言对从业者薪酬的贡献也大不一样。 看到这里的读者也不要着急去学习最能“挣钱”的编程语言,O’Reilly贴心的提醒读者,最重要的不是学习哪一种编程语言,而是真正找到能够解决你问题的相关工具。
学习不同的编程工具也有一定的学习顺序,以下是报告中建议的学习顺序,如果你已经在使用箭头左侧的工具,那么接下来可以考虑学习它紧邻右侧的下一个工具。
通过相关分析,O’Reilly发现,每周参加会议(meeting)时长和编程(coding)时长对数据科学从业者的薪水有比较大的影响。 其中,每周参会时间最长的从业者,薪水中数也越高。 每周编程时间与薪酬水平也呈现一定相关性,最高的薪水中数出现在每周编程4-8小时的人群,而最低的是那些完全不编程的人。显然,编程是成为数据科学家必不可少的技能。
全文PPT报告(英文)免费下载: |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明