| 所在主题: | |
| 文件名: 21751.rar | |
| 资料下载链接地址: https://bbs.pinggu.org/a-21751.html | |
本附件包括:
|
|
| 附件大小: | |
|
<P align=center><FONT face="Times New Roman"><B> Quantile Regression under Misspecification, with an Application</B></P>
<P align=center></P></FONT> <P align=center></P> <P align=center><B><FONT face="Times New Roman"> to the <st1:country-region w:st="on"><st1:place w:st="on">U.S.</st1:place></st1:country-region> Wage Structure <P align=center></P></FONT></B> <P align=center></P> <P align=center><B><FONT size=3><FONT face="Times New Roman"> Joshua Angrist, Victor Chernozhukov, and Iv´an Fern´andez-Val <P align=center></P></FONT></FONT></B> <P align=center></P> <P align=center><B><FONT size=3><FONT face="Times New Roman"> December 21, 2004 <P align=center></P></FONT></FONT></B> <P align=center></P> <P align=center><B><FONT face="Times New Roman">Abstract </FONT></B> <P> <P align=left><FONT face="Times New Roman"><B> Quantile regression (QR) fits a linear model for conditional quantiles, just as ordinary least squares (OLS) fits a linear model for conditional means. An attractive feature of OLS is that itgives the minimum mean square error linear approximation to the conditional expectation function even when the linear model is misspecified. Empirical research using quantile regression with discrete covariates suggests that QR may have a similar property, but the exact nature of the linear approximation has remained elusive. In this paper, we show that QR minimizes a weighted mean-squared error loss function for specification error. The weighting function is an average density of the dependent variable near the true conditional quantile. The weighted least squares interpretation of QR is used to derive an omitted variables bias formula and a partial quantile regression concept, similar to the relationship between partial regression and OLS. We also present asymptotic theory for the QR process under misspecification of the conditional quantile function. The approximation properties of QR are illustrated using wage data from the <st1:country-region w:st="on"><st1:place w:st="on">US</st1:place></st1:country-region> census. These results point to major changes in inequality from 1990-2000.</B><B>Acknowledgment. </B><B>We thank David Autor, Gary Chamberlain, George Deltas, Bernd Fitzenberger, Jinyong Hahn, Jerry Hausman, Frank Kleibergen, Roger Koenker, Rafael Lalive, Tony Lancaster, Art Lewbel, and Whitney Newey for helpful discussions, and seminar participants at Berkeley, BYU, Brown, Duke, the University of Michigan, Michigan State University, the Harvard-MIT Econometrics Workshop, the University of Toronto, the University of Illinois at Urbana-Champaign, and the 2001 and 2004 Winter Econometric Society Meetings for comments. <P></B></FONT> <P> <P align=left><B> <P><FONT face="Times New Roman" size=3></FONT></P></B> <P> <P><B> <P><FONT face="Times New Roman" size=3></FONT></P></B> <P> </P> [此贴子已经被作者于2005-8-4 12:35:01编辑过] |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明