| 所在主题: | |
| 文件名: 217572.rar | |
| 资料下载链接地址: https://bbs.pinggu.org/a-217572.html | |
本附件包括:
|
|
| 附件大小: | |
|
<P> 一本挺好的书,感兴趣的,识货的请看看吧。格式是DjVu的,实在是懒得转格式了,不好意思了。</P>
<P>Statistical Analysis of Management Data </P> <P>Gatignon, Hubert <BR>KLUWER ACADEMIC PUBLISHER, 2003<BR>ISBN: 1-4020-7315-1 </P> <P>Statistical Analysis of Management Data is especially designed to provide doctoral students with a theoretical knowledge of the basic concepts underlying the most important multivariate techniques and with an overview of actual applications in various fields. The content herein addresses both the underlying mathematics and problems of application. As such, a reasonable level of competence in both statistics and mathematics is needed. This book is not intended as a first introduction to statistics and statistical analysis. Instead it assumes that the student is familiar with basic statistical techniques. The techniques are presented in a fundamental way but in a format accessible to students in a doctoral program, to practicing academicians, and to data analysts.</P> <P> Contents<BR> Preface<BR> 1. Introduction<BR> 1.1 Overview<BR> 1.2 Objectives<BR> 1.2.1 Develop the Students Knowledge of the Technical Details of Various Techniques for Analyzing Data<BR> 1.2.2 Expose the Students to Applications and "Hand-on" Use of Various Computer Programs for Carrying Out Statistical Analyses of Data<BR> 1.3 Types of Scales<BR> 1.3.1 Definition of Different Types of Scales<BR> 1.3.2 The Impact of the Type of Scale on Statistical Analysis<BR> 1.4 Topics Covered<BR> 1.5 Pedagogy<BR> References<BR> 2. Multivariate Normal Distribution<BR> 2.1 Univariate Normal Distribution<BR> 2.2 Bivariate Normal Distribution<BR> 2.3 Generalization to Multivariate Case<BR> 2.4 Tests About Means<BR> 2.4.1 Sampling Distribution of Sample Centroids<BR> 2.4.2 Significance Test: One-sample Problem<BR> 2.4.3 Significance Test: Two-sample Problem<BR> 2.4.4 Significance Test: K-sample Problem<BR> 2.5 Examples<BR> 2.5.1 Test of the Difference Between Two Mean Vectors - One- Sample Problem<BR> 2.5.2 Test of the Difference Between Several Mean Vectors - K-sample Problem<BR> 2.6 Assignment<BR> References <BR> Basic Technical Readings<BR> Application Readings<BR> 3. Measurement Theory: Reliability and Factor Analysis<BR> 3.1 Notions of Measurement Theory<BR> 3.1.1 Definition of a Measure<BR> 3.1.2 Parallel Measurements<BR> 3.1.3 Reliability<BR> 3.1.4 Composite Scales<BR> 3.2 Factor Analysis<BR> 3.2.1 Axis Rotation<BR> 3.2.2 Variance Maximizing Rotations (Eigenvalues/vectors)<BR> 3.2.3 Principal Component Analysis<BR> 3.2.4 Factor Analysis<BR> 3.3 Conclusion - Procedure for Scale Construction<BR> 3.3.1 Exploratory Factor Analysis<BR> 3.3.2 Confirmatory Factor Analysis<BR> 3.3.3 Reliability-Coefficient<BR> 3.4 Application Examples<BR> 3.5 Assignment<BR> References <BR> Basic Technical Readings<BR> Application Readings<BR> 4. Multiple Regression with a Single Dependent Variable<BR> 4.1 Statistical Inference: Least Squares and Maximum Likelihood<BR> 4.1.1 The Linear Statistical Model<BR> 4.1.2 Point Estimation<BR> 4.1.3 Maximum Likelihood Estimation<BR> 4.1.4 Properties of Estimator<BR> 4.2 Pooling Issues<BR> 4.2.1 Linear Restrictions<BR> 4.2.2 Pooling Tests and Dummy Variable Models<BR> 4.2.3 Strategy for Pooling Tests<BR> 4.3 Examples of Linear Model Estimation with SAS<BR> 4.4 Assignment<BR> References <BR> Basic Technical Readings<BR> Application Readings<BR> 5. System of Equations<BR> 5.1 Seemingly Unrelated Regression (SUR)<BR> 5.1.1 Set of Equations with Contemporaneously Correlated Disturbances<BR> 5.1.2 Estimation<BR> 5.1.3 Special Cases<BR> 5.2 A System of Simultaneous Equations<BR> 5.2.1 The Problem<BR> 5.2.2 Two Stage Least Squares: 2SLS<BR> 5.2.3 Three Stage Least Squares: 3SLS<BR> 5.3 Simultaneity and Identification<BR> 5.3.1 The Problem<BR> 5.3.2 Order and Rank Conditions<BR> 5.4 Summary<BR> 5.4.1 Structure of Matrix<BR> 5.4.2 Structure of Matrix<BR> 5.4.3 Test of Covariance Matrix<BR> 5.4.4 3SLS versus 2SLS<BR> 5.5 Examples Using SAS<BR> 5.5.1 Seemingly Unrelated Regression Example<BR> 5.5.2 Two Stage Least Squares Example<BR> 5.5.3 Three Stage Least Squares Example<BR> 5.6 Assignment<BR> References <BR> Basic Technical Readings<BR> Application Readings<BR> 6. Categorical Dependent Variables<BR> 6.1 Discriminant Analysis<BR> 6.1.1 The Discriminant Criterion<BR> 6.1.2 Discriminant Function<BR> 6.1.3 Classification and Fit<BR> 6.2 Quantal Choice Models<BR> 6.2.1 The Difficulties of the Standard Regression Model with Categorical Dependent Variables<BR> 6.2.2 Transformational Logit<BR> 6.2.3 Conditional Logit Model<BR> 6.2.4 Fit Measures<BR> 6.3 Examples<BR> 6.3.1 Example of Discriminant Analysis Using SAS<BR> 6.3.2 Example of Multinomial Logit - Case 1 Analysis Using LIMDEP<BR> 6.3.3 Example of Multinomial Logit - Case 2 Analysis Using LOGIT. EXE<BR> 6.3.4 Example of Multinomial Logit - Case 2 Analysis Using LIMDEP<BR> 6.4 Assignment<BR> References <BR> Basic Technical Readings<BR> Application Readings<BR> 7. Rank Ordered Data<BR> 7.1 Conjoint Analysis - MONANOVA<BR> 7.1.1 Effect Coding Versus Dummy Variable Coding<BR> 7.1.2 Design Programs<BR> 7.1.3 Estimation of Part-worth Coefficients<BR> 7.2 Ordered Probit<BR> 7.3 Examples<BR> 7.3.1 Example of MONANOVA Using PC-MDS<BR> 7.3.2 Example of Conjoint Analysis Using SAS<BR> 7.3.3 Example of Ordered Probit Analysis Using LIMDEP<BR> 7.4 Assignment<BR> References <BR> Basic Technical Readings<BR> Application Readings<BR> 8. Error in Variables - Analysis of Covariance Structure<BR> 8.1 The Impact of Imperfect Measures<BR> 8.1.1 Effect of Errors-in-variables<BR> 8.1.2 Reversed Regression<BR> 8.1.3 Case with Multiple Independent Variables<BR> 8.2 Analysis of Covariance Structures<BR> 8.2.1 Description of Model<BR> 8.2.2 Estimation<BR> 8.2.3 Model Fit<BR> 8.2.4 Test of Significance of Model Parameters<BR> 8.2.5 Simultaneous Estimation of Measurement Model Parameters with Structural Relationship Parameters Versus Sequential Estimation<BR> 8.2.6 Identification<BR> 8.3 Examples<BR> 8.3.1 Example of Confirmatory Factor Analysis<BR> 8.3.2 Example of Model to Test Discriminant Validity Between Two Constructs<BR> 8.3.3 Example of Structural Model with Measurement Models<BR> 8.4 Assignment<BR> References <BR> Basic Technical Readings<BR> Application Readings<BR> 9. Analysis of Similarity and Preference Data<BR> 9.1 Proximity Matrices<BR> 9.1.1 Metric versus Non-metric Data<BR> 9.1.2 Unconditional versus Conditional Data<BR> 9.1.3 Derived Measures of Proximity<BR> 9.1.4 Alternative Proximity Matrices<BR> 9.2 Problem Definition<BR> 9.2.1 Objective Function<BR> 9.2.2 Stress as an Index of Fit<BR> 9.2.3 Metric<BR> 9.2.4 Minimum Number of Stimuli<BR> 9.2.5 Dimensionality<BR> 9.2.6 Interpretation of MDS Solution<BR> 9.2.7 The KYST Algorithm<BR> 9.3 Individual Differences in Similarity Judgments<BR> 9.4 Analysis of Preference Data<BR> 9.4.1 Vector Model of preferences<BR> 9.4.2 Ideal Point Model of Preference<BR> 9.5 Examples<BR> 9.5.1 Example of KYST<BR> 9.5.2 Example of INDSCAL<BR> 9.5.3 Example of PROFIT (Property Fitting) Analysis<BR> 9.5.4 Example of MDPREF<BR> 9.5.5 Example of PREFMAP<BR> 9.6 Assignment<BR> References <BR> Basic Technical Readings<BR> Application Readings<BR> Appendices<BR> Appendix A: Rules in Matrix Algebra <BR> Appendix B: Statistical Tables <BR> Appendix C: Description of Data Sets<BR> Index<BR></P> <P></P> <P></P> <P></P> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明