| 所在主题: | |
| 文件名: 217848.rar | |
| 资料下载链接地址: https://bbs.pinggu.org/a-217848.html | |
本附件包括:
|
|
| 附件大小: | |
|
<p><strong><font size="3"><span id="btAsinTitle">Models in Cooperative Game Theory (Hardcover)</span><!--Element not supported - Type: 8 Name: #comment--><br/></font></strong>by <a href="http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&amp;search-type=ss&amp;index=books&amp;field-author=Rodica%20Branzei"><font color="#003399">Rodica Branzei</font></a> (Author), <a href="http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&amp;search-type=ss&amp;index=books&amp;field-author=Dinko%20Dimitrov"><font color="#003399">Dinko Dimitrov</font></a> (Author), <a href="http://www.amazon.com/exec/obidos/search-handle-url?%5Fencoding=UTF8&amp;search-type=ss&amp;index=books&amp;field-author=Stef%20Tijs"><font color="#003399">Stef Tijs</font></a> (Author) </p><p><a href="http://www.amazon.com/gp/product/images/3540779531/sr=11-1/qid=1205251203/ref=dp_image_0?ie=UTF8&amp;n=283155&amp;s=books&amp;qid=1205251203&amp;sr=11-1" target="AmazonHelp"><img id="prodImage" height="240" alt="Models in Cooperative Game Theory" src="http://ecx.images-amazon.com/images/I/51Nm96KjCOL._AA240_.jpg" width="240" border="0"/></a></p><li><b>Hardcover:</b> 203 pages </li><li><b>Publisher:</b> Springer; 2nd ed. edition (April 1, 2008) </li><li><b>Language:</b> English </li><div class="content"><b>Review</b><br/><p>From the reviews of the first edition:</p><p></p><p>"This small book can be very interesting for readers who want to study further generalizations of the classical topic on cooperative games. It investigates the classical cooperative games with transferable utility and some game models in which the players have the possibility to cooperate partially, that is, fuzzy games and multichoice games. The book is written very clearly, being a rich review of the most essential notions and theorems (with proofs) in these topics." (Tadeusz Radzik, Zentralblatt MATH, Vol. 1079, 2006)</p><br/><br/><b>Book Description</b><br/><p>This book investigates models in cooperative game theory in which the players have the possibility to cooperate partially. In a crisp game the agents are either fully involved or not involved at all in cooperation with some other agents, while in a fuzzy game players are allowed to cooperate with infinite many different participation levels, varying from non-cooperation to full cooperation. A multi-choice game describes the intermediate case in which each player may have a fixed number of activity levels. Different set and one-point solution concepts for these games are presented. The properties of these solution concepts and their interrelations on several classes of crisp, fuzzy, and multi-choice games are studied. Applications of the investigated models to many economic situations are indicated as well. The second edition is highly enlarged and contains new results and additional sections in the different chapters as well as one new chapter.</p><p><strong><font size="4">Contents</font></strong><br/><strong>Part I Cooperative Games with Crisp Coalitions<br/>1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br/>2 Cores and Related Solution Concepts . . . . . . . . . . . . . . . . 13</strong><br/>2.1 Imputations, Cores and Stable Sets . . . . . . . . . . . . . . . . . . . 13<br/>2.2 The Core Cover, the Reasonable Set and the Weber Set . 20<br/><strong>3 The Shapley Value, the τ -value, and the Average</strong><br/><strong>Lexicographic Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25</strong><br/>3.1 The Shapley Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br/>3.2 The τ-value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31<br/>3.3 The Average Lexicographic Value . . . . . . . . . . . . . . . . . . . . 33<br/><strong>4 Egalitarianism-based Solution Concepts . . . . . . . . . . . . . . 37</strong><br/>4.1 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37<br/>4.2 The Equal Split-Off Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38<br/>4.2.1 The Equal Split-Off Set for General Games . . . . . . 39<br/>4.2.2 The Equal Split-Off Set for Superadditive Games . 41<br/><strong>5 Classes of Cooperative Crisp Games . . . . . . . . . . . . . . . . . 43</strong><br/>5.1 Totally Balanced Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br/>5.1.1 Basic Characterizations and Properties of<br/>Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br/>5.1.2 Totally Balanced Games and Population<br/>Monotonic Allocation Schemes . . . . . . . . . . . . . . . . . 45<br/>5.2 Convex Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>5.2.1 Basic Characterizations . . . . . . . . . . . . . . . . . . . . . . . 46<br/>5.2.2 Convex Games and Population Monotonic<br/>Allocation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 49<br/>5.2.3 The Constrained Egalitarian Solution for Convex<br/>Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50<br/>5.2.4 Properties of Solution Concepts . . . . . . . . . . . . . . . . 53<br/>5.3 Clan Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br/>5.3.1 Basic Characterizations and Properties of<br/>Solution Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59<br/>5.3.2 Total Clan Games and Monotonic Allocation<br/>Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62<br/>5.4 Convex Games versus Clan Games . . . . . . . . . . . . . . . . . . . 65<br/>5.4.1 Characterizations via Marginal Games . . . . . . . . . . 66<br/>5.4.2 Dual Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 68<br/>5.4.3 The Core versus the Weber Set . . . . . . . . . . . . . . . . . 70<br/><strong>Part II Cooperative Games with Fuzzy Coalitions</strong><br/><strong>6 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77<br/>7 Solution Concepts for Fuzzy Games . . . . . . . . . . . . . . . . . . 83</strong><br/>7.1 Imputations and the Aubin Core . . . . . . . . . . . . . . . . . . . . . 83<br/>7.2 Cores and Stable Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br/>7.3 Generalized Cores and Stable Sets . . . . . . . . . . . . . . . . . . . . 89<br/>7.4 The Shapley Value and the Weber Set . . . . . . . . . . . . . . . . 94<br/>7.5 Path Solutions and the Path Solution Cover . . . . . . . . . . . 96<br/>7.6 Compromise Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100<br/><strong>8 Convex Fuzzy Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103</strong><br/>8.1 Basic Characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103<br/>8.2 Egalitarianism in Convex Fuzzy Games . . . . . . . . . . . . . . . 110<br/>8.3 Participation Monotonic Allocation Schemes . . . . . . . . . . . 116<br/>8.4 Properties of Solution Concepts . . . . . . . . . . . . . . . . . . . . . . 119<br/><strong>9 Fuzzy Clan Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127</strong><br/>9.1 The Cone of Fuzzy Clan Games . . . . . . . . . . . . . . . . . . . . . . 127<br/>9.2 Cores and Stable Sets for Fuzzy Clan Games . . . . . . . . . . 131<br/>9.3 Bi-Monotonic Participation Allocation Rules . . . . . . . . . . . 135<br/>Contents XI<br/><strong>Part III Multi-Choice Games<br/>10 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145</strong><br/><strong>11 Solution Concepts for Multi-Choice Games . . . . . . . . . . 149</strong><br/>11.1 Imputations, Cores and Stable Sets . . . . . . . . . . . . . . . . . . . 149<br/>11.2Marginal Vectors and the Weber Set . . . . . . . . . . . . . . . . . . 155<br/>11.3 Shapley-like Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159<br/>11.4 The Equal Split-Off Set for Multi-Choice Games . . . . . . . 163<br/><strong>12 Classes of Multi-Choice Games . . . . . . . . . . . . . . . . . . . . . . 165</strong><br/>12.1 Balanced Multi-Choice Games . . . . . . . . . . . . . . . . . . . . . . . 165<br/>12.1.1 Basic Characterizations . . . . . . . . . . . . . . . . . . . . . . . 165<br/>12.1.2 Totally Balanced Games and Monotonic<br/>Allocation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 169<br/>12.2 Convex Multi-Choice Games . . . . . . . . . . . . . . . . . . . . . . . . . 170<br/>12.2.1 Basic Characterizations . . . . . . . . . . . . . . . . . . . . . . . 170<br/>12.2.2 Monotonic Allocation Schemes . . . . . . . . . . . . . . . . . 173<br/>12.2.3The Constrained Egalitarian Solution . . . . . . . . . . . 174<br/>12.2.4 Properties of Solution Concepts . . . . . . . . . . . . . . . . 180<br/>12.3Multi-Choice Clan Games . . . . . . . . . . . . . . . . . . . . . . . . . . . 182<br/>12.3.1 Basic Characterizations . . . . . . . . . . . . . . . . . . . . . . . 182<br/>12.3.2 Bi-Monotonic Allocation Schemes . . . . . . . . . . . . . . . 186<br/><strong>References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193<br/>Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201</strong></p></div><p></p><p><br/></p>
|
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明