搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Principles of Data Science(2017).rar
资料下载链接地址: https://bbs.pinggu.org/a-2243977.html
本附件包括:
  • Principles of Data Science(2017).mobi
附件大小:
16.71 MB   举报本内容
如果喜欢该文档,欢迎点击头像下方的“+加关注订阅【kindle电子书】文库,https://bbs.pinggu.org/forum.php?mod=collection&action=view&ctid=3186

Principles of Data Science(2017)[hide][/hide]

Sinan Ozdemir

Packt Publishing


Key FeaturesEnhance your knowledge of coding with data science theory for practical insight into data science and analysisMore than just a math class, learn how to perform real-world data science tasks with R and PythonCreate actionable insights and transform raw data into tangible valueBook Description
Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you'll feel confident about asking―and answering―complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas.

With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you'll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You'll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means.
What you will learnGet to know the five most important steps of data scienceUse your data intelligently and learn how to handle it with careBridge the gap between mathematics and programming Learn about probability, calculus, and how to use statistical models to control and clean your data and drive actionable resultsBuild and evaluate baseline machine learning modelsExplore the most effective metrics to determine the success of your machine learning modelsCreate data visualizations that communicate actionable insightsRead and apply machine learning concepts to your problems and make actual predictionsAbout the Author
Sinan Ozdemir is a data scientist, startup founder, and educator living in the San Francisco Bay Area with his dog, Charlie; cat, Euclid; and bearded dragon, Fiero. He spent his academic career studying pure mathematics at Johns Hopkins University before transitioning to education. He spent several years conducting lectures on data science at Johns Hopkins University and at the General Assembly before founding his own start-up, Legion Analytics, which uses artificial intelligence and data science to power enterprise sales teams.

After completing the Fellowship at the Y Combinator accelerator, Sinan has spent most of his days working on his fast-growing company, while creating educational material for data science.
Table of ContentsHow to Sound Like a Data ScientistTypes of DataThe Five Steps of Data ScienceBasic MathematicsImpossible or Improbable – A Gentle Introduction to ProbabilityAdvanced ProbabilityBasic StatisticsAdvanced StatisticsCommunicating DataHow to Tell If Your Toaster Is Learning – Machine Learning EssentialsPredictions Don't Grow on Trees – or Do They?Beyond the Essentials Case Studies



    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2025-12-30 23:31