| 所在主题: | |
| 文件名: Discovering Statistics Using IBM SPSS Statistics- 4th Andy Field(2013).pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-2339285.html | |
| 附件大小: | |
|
CONTENTS
Preface How to use this book Acknowledgements Dedication Symbols used in this book Some maths revision 1 Why is my evil lecturer forcing me to learn statistics? 1.1. What will this chapter tell me? ① 1.2. What the hell am I doing here? I don’t belong here ① 1.2.1. The research process ① 1.3. Initial observation: finding something that needs explaining ① 1.4. Generating theories and testing them ① 1.5. Collect data to test your theory ① 1.5.1. Variables ① 1.5.2. Measurement error ① 1.5.3. Validity and reliability ① 1.5.4. Correlational research methods ① 1.5.5. Experimental research methods ① 1.5.6. Randomization ① 1.6. Analysing data ① 1.6.1. Frequency distributions ① 1.6.2. The centre of a distribution ① 1.6.3. The dispersion in a distribution ① 1.6.4. Using a frequency distribution to go beyond the data ① 1.6.5. Fitting statistical models to the data ① 1.7. Reporting data ① 1.7.1. Dissemination of research ① 1.7.2. Knowing how to report data ① 1.7.3. Some initial guiding principles ① 1.8. Brian’s attempt to woo Jane ① 1.9. What next? ① 1.10. Key terms that I’ve discovered 1.11. Smart Alex’s tasks 1.12. Further reading 2 Everything you never wanted to know about statistics 2.1. What will this chapter tell me? ① 2.2. Building statistical models ① 2.3. Populations and samples ① 2.4. Statistical models ① 2.4.1. The mean as a statistical model ① 2.4.2. Assessing the fit of a model: sums of squares and variance revisited ① 2.4.3. Estimating parameters ① 2.5. Going beyond the data ① 2.5.1. The standard error ① 2.5.2. Confidence intervals ② 2.6. Using statistical models to test research questions ① 2.6.1. Null hypothesis significance testing ① 2.6.2. Problems with NHST ② 2.7. Modern approaches to theory testing ② 2.7.1. Effect sizes ② 2.7.2. Meta-analysis ② 2.8. Reporting statistical models ② 2.9. Brian’s attempt to woo Jane ① 2.10. What next? ① 2.11. Key terms that I’ve discovered 2.12. Smart Alex’s tasks 2.13. Further reading 3 The IBM SPSS Statistics environment 3.1. What will this chapter tell me? ① 3.2. Versions of IBM SPSS Statistics ① 3.3. Windows versus MacOS ① 3.4. Getting started ① 3.5. The data editor ① 3.5.1. Entering data into the data editor ① 3.5.2. The variable view ① 3.5.3. Missing values ① 3.6. Importing data ① 3.7. The SPSS viewer ① 3.8. Exporting SPSS output ① 3.9. The syntax editor ③ 3.10. Saving files ① 3.11. Retrieving a file ① 3.12. Brian’s attempt to woo Jane ① 3.13. What next? ① 3.14. Key terms that I’ve discovered 3.15. Smart Alex’s tasks 3.16. Further reading 4 Exploring data with graphs 4.1. What will this chapter tell me? ① 4.2. The art of presenting data ① 4.2.1. What makes a good graph? ① 4.2.2. Lies, damned lies, and … erm … graphs ① 4.3. The SPSS chart builder ① 4.4. Histograms ① 4.5. Boxplots (box–whisker diagrams) ① 4.6. Graphing means: bar charts and error bars ① 4.6.1. Simple bar charts for independent means ① 4.6.2. Clustered bar charts for independent means ① 4.6.3. Simple bar charts for related means ① 4.6.4. Clustered bar charts for related means ① 4.6.5. Clustered bar charts for ‘mixed’ designs ① 4.7. Line charts ① 4.8. Graphing relationships: the scatterplot ① 4.8.1. Simple scatterplot ① 4.8.2. Grouped scatterplot ① 4.8.3. Simple and grouped 3-D scatterplots ① 4.8.4. Matrix scatterplot ① 4.8.5. Simple dot plot or density plot ① 4.8.6. Drop-line graph ① 4.9. Editing graphs ① 4.10. Brian’s attempt to woo Jane ① 4.11. What next? ① 4.12. Key terms that I’ve discovered 4.13. Smart Alex’s tasks 4.14. Further reading 5 The beast of bias 5.1. What will this chapter tell me? ① 5.2. What is bias? ① 5.2.1. Assumptions ① 5.2.2. Outliers ① 5.2.3. Additivity and linearity ① 5.2.4. Normally distributed something or other ① 5.2.5. Homoscedasticity/homogeneity of variance ② 5.2.6. Independence ② 5.3 Spotting bias ② 5.3.1. Spotting outliers ② 5.3.2. Spotting normality ① 5.3.3. Spotting linearity and heteroscedasticity/heterogeneity of variance ② 5.4. Reducing bias ② 5.4.1. Trimming the data ② 5.4.2. Winsorizing ① 5.4.3. Robust methods ③ 5.4.4. Transforming data ② 5.5. Brian’s attempt to woo Jane ① 5.6. What next? ① 5.7. Key terms that I’ve discovered 5.8. Smart Alex’s tasks 5.9. Further reading 6 Non-parametric models 6.1. What will this chapter tell me? ① 6.2. When to use non-parametric tests ① 6.3. General procedure of non-parametric tests in SPSS ① 6.4. Comparing two independent conditions: the Wilcoxon rank-sum test and Mann–Whitney test ① 6.4.1. Theory ② 6.4.2. Inputting data and provisional analysis ① 6.4.3. The Mann–Whitney test using SPSS ① 6.4.4. Output from the Mann–Whitney test ① 6.4.5. Calculating an effect size ② 6.4.6. Writing the results ① 6.5. Comparing two related conditions: the Wilcoxon signed-rank test ① 6.5.1. Theory of the Wilcoxon signed-rank test ② 6.5.2. Running the analysis ① 6.5.3. Output for the ecstasy group ① 6.5.4. Output for the alcohol group ① 6.5.5. Calculating an effect size ② 6.5.6. Writing the results ① 6.6. Differences between several independent groups: the Kruskal–Wallis test ① 6.6.1. Theory of the Kruskal–Wallis test ② 6.6.2. Follow-up analysis ② 6.6.3. Inputting data and provisional analysis ① 6.6.4. Doing the Kruskal–Wallis test in SPSS ① 6.6.5. Output from the Kruskal–Wallis test ① 6.6.6. Testing for trends: the Jonckheere–Terpstra test ② 6.6.7. Calculating an effect size ② 6.6.8. Writing and interpreting the results ① 6.7. Differences between several related groups: Friedman’s ANOVA ① 6.7.1. Theory of Friedman’s ANOVA ② 6.7.2. Inputting data and provisional analysis ① 6.7.3. Doing Friedman’s ANOVA in SPSS ① 6.7.4. Output from Friedman’s ANOVA ① 6.7.5. Following-up Friedman’s ANOVA ② 6.7.6. Calculating an effect size ② 6.7.7. Writing and interpreting the results ① 6.8. Brian’s attempt to woo Jane ① 6.9. What next? ① 6.10. Key terms that I’ve discovered 6.11. Smart Alex’s tasks 6.12. Further reading 7 Correlation 7.1. What will this chapter tell me? ① 7.2. Modelling relationships ① 7.2.1. A detour into the murky world of covariance ① 7.2.2. Standardization and the correlation coefficient ① 7.2.3. The significance of the correlation coefficient ③ 7.2.4. Confidence intervals for r ③ 7.2.5. A word of warning about interpretation: causality ① 7.3. Data entry for correlation analysis using SPSS ① 7.4. Bivariate correlation ① 7.4.1. General procedure for running correlations in SPSS ① 7.4.2. Pearson’s correlation coefficient ① 7.4.3. Spearman’s correlation coefficient ① 7.4.4. Kendall’s tau (non-parametric) ① 7.4.5. Biserial and point-biserial correlations ③ 7.5. Partial correlation ② 7.5.1. The theory behind part and partial correlation ③ 7.5.2. Partial correlation in SPSS ③ 7.5.3. Semi-partial (or part) correlations ② 7.6. Comparing correlations ③ 7.6.1. Comparing independent rs ③ 7.6.2. Comparing dependent rs ③ 7.7. Calculating the effect size ① 7.8. How to report correlation coefficients ① 7.9. Brian’s attempt to woo Jane ① 7.10. What next? ① 7.11. Key terms that I’ve discovered 7.12. Smart Alex’s tasks 7.13. Further reading 8 Regression 8.1. What will this chapter tell me? ① 8.2. An introduction to regression ① 8.2.1. The simple linear model ① 8.2.2. The linear model with several predictors ② 8.2.3. Estimating the model ② 8.2.4. Assessing the goodness of fit, sums of squares, R and R2 ① 8.2.5. Assessing individual predictors ① 8.3. Bias in regression models? ② 8.3.1. Is the model biased by unusual cases? ② 8.3.2. Generalizing the model ② 8.3.3. Sample size in regression ③ 8.4. Regression using SPSS: One Predictor ① 8.4.1. Regression: the general procedure ① 8.4.2. Running a simple regression using SPSS ① 8.4.3. Interpreting a simple regression ① 8.4.4. Using the model ① 8.5. Multiple regression ② 8.5.1. Methods of regression ② 8.5.2. Comparing models ② 8.5.3. Multicollinearity ② 8.6. Regression with several predictors using SPSS ② 8.6.1. Main options ② 8.6.2. Statistics ② 8.6.3. Regression plots ② 8.6.4. Saving regression diagnostics ② 8.6.5. Further options ② 8.6.6. Robust regression ② 8.7. Interpreting multiple regression ② 8.7.1. Descriptives ② 8.7.2. Summary of model ② 8.7.3. Model parameters ② 8.7.4. Excluded variables ② 8.7.5. Assessing multicollinearity ② 8.7.6. Bias in the model: casewise diagnostics ② 8.7.7. Bias in the model: assumptions ② 8.8. What if I violate an assumption? Robust regression ② 8.9. How to report multiple regression ② 8.10. Brian’s attempt to woo Jane ① 8.11. What next? ① 8.12. Key terms that I’ve discovered 8.13. Smart Alex’s tasks 8.14. Further reading 9 Comparing two means ...... 10 Moderation, mediation and more regression ...... 11 Comparing several means: ANOVA (GLM 1) ........ 12 Analysis of covariance, ANCOVA (GLM 2) ......... 13 Factorial ANOVA (GLM 3) ........ 14 Repeated-measures designs (GLM 4) ............... |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明