| 所在主题: | |
| 文件名: Deep_Learning_for_Multivariate.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-2367169.html | |
| 附件大小: | |
|
Deep Learning for MultivariateFinancial Time Series Abstract:Deep learning is a framework for training and modelling neural networkswhich recently have surpassed all conventional methods in many learningtasks, prominently image and voice recognition. This thesis uses deep learning algorithms to forecast financial data. Thedeep learning framework is used to train a neural network. The deep neuralnetwork is a DBN coupled to a MLP. It is used to choose stocks to formportfolios. The portfolios have better returns than the median of the stocksforming the list. The stocks forming the S&P 500 are included in the study.The results obtained from the deep neural network are compared to benchmarksfrom a logistic regression network, a multilayer perceptron and a naivebenchmark. The results obtained from the deep neural network are betterand more stable than the benchmarks. The findings support that deep learningmethods will find their way in finance due to their reliability and goodperformance. Keywords: Back-Propagation Algorithm, Neural networks, Deep Belief Networks,Multilayer Perceptron, Deep Learning, Contrastive Divergence, GreedyLayer-wise Pre-training. Contents1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Neural Networks 5 2.1 Single Layer Neural Network . . . . . . . . . . . . . . . . . .6 2.1.1 Artificial Neurons . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Activation Function . . . . . . . . . . . . . . . . . . . . .7 2.1.3 Single-Layer Feedforward Networks . . . . . . . . 11 2.1.4 The Perceptron . . . . . . . . . . . . . . . . . . . . . . .12 2.1.5 The Perceptron As a Classifier . . . . . . . . . . . . 12 2.2 Multilayer Neural Networks . . . . . . . . . . . . . . . . . . 15 2.2.1 The Multilayer Perceptron . . . . . . . . . . . . . . . 15 2.2.2 Function Approximation with MLP . . . . . . . . . .16 2.2.3 Regression and Classification . . . . . . . . . . . . . 17 2.2.4 Deep Architectures . . . . . . . . . . . . . . . . . . . . 18 2.3 Deep Belief Networks . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1 Boltzmann Machines . . . . . . . . . . . . . . . . . . . 22 2.3.2 Restricted Boltzmann Machines . . . . . . . . . . .24 2.3.3 Deep Belief Networks . . . . . . . . . . . . . . . . . . .25 2.3.4 Model for Financial Application . . . . . . . . . . . . 27 3 Training Neural Networks 31 3.1 Back-Propagation Algorithm . . . . . . . . . . . . . . . . . . 31 3.1.1 Steepest Descent . . . . . . . . . . . . . . . . . . . . . 31 3.1.2 The Delta Rule . . . . . . . . . . . . . . . . . . . . . . . 32 Case 1 Output Layer . . . . . . . . . . . . . . . . . . . 33 Case 2 Hidden Layer . . . . . . . . . . . . . . . . . . . 33 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.1.3 Forward and Backward Phase . . . . . . . . . . . . .34 Forward Phase . . . . . . . . . . . . . . . . . . . . . . . 34 Backward Phase . . . . . . . . . . . . . . . . . . . . . . 34 3.1.4 Computation of δ for Known Activation Functions . . 35 3.1.5 Choosing Learning Rate . . . . . . . . . . . . . . . . . 36 3.1.6 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . 36 Early-Stopping . . . . . . . . . . . . . . . . . . . . . . . .37 3.1.7 Heuristics For The Back-Propagation Algorithm . . . .39 3.2 Batch and On-Line Learning . . . . . . . . . . . . . . . . . . 41 3.2.1 Batch Learning . . . . . . . . . . . . . . . . . . . . . . . 42 3.2.2 The Use of Batches . . . . . . . . . . . . . . . . . . . . 42 3.2.3 On-Line Learning . . . . . . . . . . . . . . . . . . . . . .43 3.2.4 Generalization . . . . . . . . . . . . . . . . . . . . . . . .43 3.2.5 Example: Regression with Neural Networks . . . . . . 44 3.3 Training Restricted Boltzmann Machines . . . . . . . . . . . . 47 3.3.1 Contrastive Divergence . . . . . . . . . . . . . . . . . . . . 49 3.4 Training Deep Belief Networks . . . . . . . . . . . . . . . . . . . 53 3.4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . .58 4 Financial Model 59 4.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.1 Input Data and Financial Model . . . . . . . . . . .60 5 Experiments and Results 63 5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 5.3.1 Summary of Results . . . . . . . . . . . . . . . . . . 69 6 Discussion 71 Appendices 75 A Appendix 77 A.1 Statistical Physics . . . . . . . . . . . . . . . . . . . . . . . . .77 A.1.1 Logistic Belief Networks . . . . . . . . . . . . . . . .78 A.1.2 Gibbs Sampling . . . . . . . . . . . . . . . . . . . . . .78 A.1.3 Back-Propagation: Regression . . . . . . . . . . . 79 A.2 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 文章来源:BigQuant百度网盘 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明