| 所在主题: | |
| 文件名: 深度学习、优化与识别.part2.rar | |
| 资料下载链接地址: https://bbs.pinggu.org/a-2528007.html | |
| 附件大小: | |
|
【电子书下载】《深度学习、优化与识别》高清PDF下载 作者: 焦李成 出版年: 2017-6
内容简介 《深度学习、优化与识别》的特色 深度学习是计算机科学与人工智能的重要组成部分。全书16章,分为理论与实践应用两部分,同时介绍5种深度学习主流平台的特性与应用,最后给出了深度学习的前沿进展介绍,另附带47种相关网络模型的实现代码。本书具有以下的特点: 一、内容系统全面 全书16章,覆盖了深度学习当前出现的诸多经典框架或模型,分为两个部分。第一部分系统地从数据、模型、优化目标函数和求解等四个方面论述了深度学习的理论及算法,如卷积神经网络、深度生成模型等;第二部分基于5种主流的深度学习平台给出了深度网络在自然图像、卫星遥感影像等领域的应用,如分类、变化检测、目标检测与识别等任务。另外给出了深度学习发展的脉络图及最新研究进展,提供可基于5种平台实现的47中深度网络代码,以便有兴趣的读者进一步钻研探索。 二、叙述立场客观 作为深度学习的入门教材,尽可能不带偏见地对材料进行分析、加工以及客观介绍。本书理论部分均从模型产生的本源来介绍,并给出各个经典模型之间内在的相互联系。本书实践应用部分对相关任务做了详尽的分析,并给出深度学习应用实践的经验总结。 内容简介 深度神经网络是近年来受到广泛关注的研究方向,它已成为人工智能2.0的主要组成部分。本书系统地论述了深度神经网络基本理论、算法及应用。全书共16章,分为两个部分;第一部分(第1章~10章)系统论述了理论及算法,包括深度前馈神经网络、深度卷积神经网络、深度堆栈神经网络、深度递归神经网络、深度生成网络、深度融合网络等;第二部分(第11~15章)论述了常用的深度学习平台,以及在高光谱图像、自然图像、SAR与极化SAR影像等领域的应用;第16章为总结与展望,给出了深度学习发展的历史图、前沿方向及最新进展。每章都附有相关阅读材料及仿真代码,以便有兴趣的读者进一步钻研探索。 本书可为高等院校计算机科学、电子科学与技术、信息科学、控制科学与工程、人工智能等领域的研究人员提供参考,以及作为相关专业本科生及研究生教学参考书,同时可供深度学习及其应用感兴趣的研究人员和工程技术人员参考。 目录 第1章 深度学习基础 第2章 深度前馈神经网络 第3章 深度卷积神经网络 第4章 深度堆栈自编码网络 第5章 稀疏深度神经网络 第6章 深度融合网络 第7章 深度生成网络 第8章 深度复卷积神经网络与深度二值神经网络 第9章 深度循环和递归神经网络 第10章 深度强化学习 第11章 深度学习软件仿真平台及开发环境 第12章 基于深度神经网络的SAR/PolSAR影像地物分类 第13章 基于深度神经网络的SAR影像变化检测 第14章 基于深度神经网络的高光谱图像分类与压缩 第15章 基于深度神经网络的目标检测与识别 第16章 总结与展望 参考文献 附录A 基于深度学习的常见任务处理介绍 附录B 代码介绍 觉得可以就回复一下吧,让更多的人看见优秀的资料!!
|
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明