搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  空间横截面计量经济模型.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3091317.html
附件大小:
558.08 KB   举报本内容

只需几行代码,你就可以输出以下空间回归结果表格,一次性输出全部8个模型结果!





一、使用空间计量经济模型的动机

一种方法从来都是为了解决问题,而不是故弄玄虚。所以,在准备用空间回归分析之前,我们得先问自己,为什么要用它?这有两大考虑:一是模型更可靠,二是为了识别空间效应。在一个空间样本集中,样本点之间是相互影响的,这种影响表现在数据上就是Y的空间自相关性,一般用莫兰指数来衡量。空间自相关来源有三:或是Y之间相互影响,或是毗邻的X影响本身的Y,或是模型中忽略的因素存在空间关联性。

根据这三种关联机制,建模的思路也很直接:如果是邻居的Yj影响自身的Yi(反过来Yi也会影响Yj),那就把邻居的Yj值平均后视为新的自变量LY,加到X中去再回归。好比浙江的GDP受到本身投入水平的影响,但也与周边的GDP产出水平有关,因此需要将其毗邻省份,如上海、江苏、安徽、江西、福建的GDP平均后作为新的自变量。每个省份都如此处理,就得到了一列新的变量。

如果是邻居的X影响本身的Y,类似以上做法,把邻居X平均后得到的变量LX加进原有的X再做回归。一般来说,有多少个X,就有多少个LX。

如果模型中应该考虑LY或(和)LX而你没有考虑,统计上看,就等于产生了遗漏变量偏差,因此模型估计是不可靠的。

第三种情况,模型中忽略的因素间存在空间关联性,这种效应将被误差项吸收,造成误差项相关。如果忽略的因素外生性很强,如环境变量或是外生冲击等,其不会造成有偏性或是一致性等问题,因此在大样本下问题不严重,但其会影响估计效率。处理方法是将误差项设定为空间自回归,等于将其分解,一部分为空间自相关部分,则剩下的那部分就是白噪声了。举个例子,假如在城市某区域政府突然要建一个垃圾站,则将会整体拉低那篇区域的房价,使其变动表现出空间自相关性。假如在房价影响模型中你没有考虑这个影响(当然你可以设置虚拟变量或是加入与垃圾站的距离来予以考虑),则其影响就归入误差项中,统计上表现出来就是残差值的莫兰指数显著。

除了模型估计上的考虑外,有时候还想看一下邻居到底对自身有没有影响?如果有,是正向还是负向(通常为正向),影响效应到底有多大?这就是空间效应的识别,这是普通回归模型所做不到的。

基于上述三种空间效应的组合,可以得到7种不同形式的空间回归模型。这些模型中,用得比较多的是空间滞后模型(SLM)、空间误差模型(SEM)和空间杜宾模型(SDM)。






二、直接效应和间接效应

如何利用空间回归识别空间效应?这个比较复杂,它不能简答地理解为空间回归系数,如ρ、λ等,需要将总效应分解为直接效应和间接效应,后者即为空间溢出效应。

从样本总体来看,我们看到的是所有观测单元某一个X的平均变动,所造成的Y的平均变动。考虑一个包含3个单元、只有一个X的简单情况。在普通回归模型设定里,单元间是彼此独立的,如果X1(即第一个单元的X,下同)、X2、X3都变动1个单位,Y1、Y2、Y3分别变动1、2、3个单位,则Y的平均变动为( 1+2+3)] / 3=2个单位。但在空间回归模型设定里,我们观测到的是Y可能变动2.5个单位。因为单元间存在空间互动,所以X1变动1个单位,除了造成自己的Y1变动1个单位外(由于存在反馈效应,实际上会大于1),还使得旁边的Y2和Y3分别变动0.1和0.2个单位;X2变动一个单位,除了造成Y2变动2个单位外,还造成旁边的Y1和Y3分别变动0.2和0.3个单位;X3变动一个单位,除了造成Y3变动3个单位外,还造成旁边的Y1和Y2分别变动0.3和0.4个单位。这样,我们在总体上看到的是:X平均变动1个单位,Y平均变动[(1+0.1+0.2)+(2+0.2+0.3)+(3+0.3+0.4)]/ 3=2+0.5=2.5个单位。2.5个单位变动的总效应中,2个单位是直接效应,0.5个单位是间接效应。

当然,现实情况远比以上例子复杂。如X1影响Y1、Y2和Y3,后两者又反过来影响Y1。每个人既影响自己,也影响邻居,邻居反过来影响自己,同时又影响邻居的邻居。只要没有孤岛,这种影响就如波浪般绵延不绝。等到了一个均衡状态,空间溢出效应就相对稳定了。

至于分解的计算公式,以及如何判别间接效应的显著性,这里不予详述,反正软件会算出来,我们懂其原理即可,具体请参看Elhorst(2014,p20-25)。


三、空间横截面数据计量经济分析

从数据角度看,要做空间回归,需要的不过是在普通数据集上加上空间权重矩阵,然后用软件分析即可。这里关键是空间权重矩阵的生成,工具有GeoDa、Stata、R等,各有千秋,都基于存储地理坐标数据的shape文件。这里以中国31个大陆省份为例,用笔者编写的shp2mat命令生成31*31的空间权重矩阵。这个命令的使用请参看本公众号已经发表的文章《shp2mat:基于shape文件生成空间权重矩阵》。一言以蔽之,无论是生成0-1形式矩阵,还是距离倒数矩阵(包括距离阈值),用这个命令一行代码即可得到n*n矩阵,且在有“孤岛”的情况下自动将其最近单元设为邻居。

经验上讲,如果想顺利运行空间回归,首先观测数据性质要良好,即不要有缺失值、无穷值等;其次是空间权重矩阵最好为稀疏(即有大量0值),每个单元确保至少有1个邻居(即不能出现某行全为0的情况),行标准化之前为对称最好,但这不是必须的。如果你不知道何种方式矩阵为最佳,那么就选最原始的0-1邻接矩阵,并保持对称。


限于篇幅,请继续看附件内容,并获取相应代码和数据。






    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-15 21:56