搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  312238.pdf
资料下载链接地址: https://bbs.pinggu.org/a-312238.html
附件大小:
<p></p><p><br/>Monte Carlo and Quasi-Monte Carlo Sampling</p><div class="c"></div><div class="tpc_content"><div class="c" id="p_tpc"></div><div class="f14">Monte Carlo and Quasi-Monte Carlo Sampling (Springer Series in Statistics)<br/>By Christiane Lemieux<br/><br/><br/>Publisher:&nbsp;&nbsp; Springer <br/>Number Of Pages:&nbsp;&nbsp; 376 <br/>Publication Date:&nbsp;&nbsp; 2009-02-27 <br/>ISBN-10 / ASIN:&nbsp;&nbsp; 0387781641 <br/>ISBN-13 / EAN:&nbsp;&nbsp; 9780387781648 <br/><br/><br/>Product Description: <br/><br/><br/>Quasi-Monte Carlo methods have become an increasingly popular alternative to Monte Carlo methods over the last two decades. Their successful implementation on practical problems, especially in finance, has motivated the development of several new research areas within this field to which practitioners and researchers from various disciplines currently contribute.<br/><br/>This book presents essential tools for using quasi-Monte Carlo sampling in practice. The first part of the book focuses on issues related to Monte Carlo methods—uniform and non-uniform random number generation, variance reduction techniques—but the material is presented to prepare the readers for the next step, which is to replace the random sampling inherent to Monte Carlo by quasi-random sampling. The second part of the book deals with this next step. Several aspects of quasi-Monte Carlo methods are covered, including constructions, randomizations, the use of ANOVA decompositions, and the concept of effective dimension. The third part of the book is devoted to applications in finance and more advanced statistical tools like Markov chain Monte Carlo and sequential Monte Carlo, with a discussion of their quasi-Monte Carlo counterpart.<br/><br/>The prerequisites for reading this book are a basic knowledge of statistics and enough mathematical maturity to follow through the various techniques used throughout the book. This text is aimed at graduate students in statistics, management science, operations research, engineering, and applied mathematics. It should also be useful to practitioners who want to learn more about Monte Carlo and quasi-Monte Carlo methods and researchers interested in an up-to-date guide to these methods.<br/><br/>Christiane Lemieux is an Associate Professor and the Associate Chair for Actuarial Science in the Department of Statistics and Actuarial Science at the University of Waterloo in Canada. She is an Associate of the Society of Actuaries and was the winner of a “Young Researcher Award in Information-Based Complexity” in 2004. </div><div class="f14"></div><div class="f14">Contents</div><div class="f14"><br/>1 The Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1<br/>1.1 Monte Carlo method for integration . . . . . . . . . . . . . . . . . . . . . . 3<br/>1.2 Connection with stochastic simulation . . . . . . . . . . . . . . . . . . . . . 12<br/>1.3 Alternative formulation of the integration problem via f: </div><div class="f14">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; an example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br/>1.4 A primer on uniform random number generation . . . . . . . . . . . 22<br/>1.5 Using Monte Carlo to approximate a distribution . . . . . . . . . . . 25<br/>1.6 Two more examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br/>Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br/>2 Sampling from Known Distributions . . . . . . . . . . . . . . . . . . . . . . 41<br/>2.1 Common distributions arising in stochastic models . . . . . . . . . . 42<br/>2.2 Inversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44<br/>2.3 Acceptance-rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46<br/>2.4 Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48<br/>2.5 Convolution and other useful identities . . . . . . . . . . . . . . . . . . . . 50<br/>2.6 Multivariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51<br/>Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55<br/>3 Pseudorandom Number Generators . . . . . . . . . . . . . . . . . . . . . . . 57<br/>3.1 Basic concepts and definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58<br/>3.2 Generators based on linear recurrences . . . . . . . . . . . . . . . . . . . . 60<br/>3.2.1 Recurrences over Zm for m ≥ 2 . . . . . . . . . . . . . . . . . . . . 61<br/>3.2.2 Recurrences modulo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<br/>3.3 Add-with-carry and subtract-with-borrow generators . . . . . . . . 66<br/>3.4 Nonlinear generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67<br/>3.5 Theoretical and statistical testing . . . . . . . . . . . . . . . . . . . . . . . . . 68<br/>3.5.1 Theoretical tests for MRGs . . . . . . . . . . . . . . . . . . . . . . . . 70<br/>3.5.2 Theoretical tests for PRNGs based on recurrences<br/>modulo 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75<br/>3.5.3 Statistical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80<br/>Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85<br/>4 Variance Reduction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br/>4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87<br/>4.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br/>4.3 Antithetic variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89<br/>4.4 Control variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101<br/>4.5 Importance sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111<br/>4.6 Conditional Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119<br/>4.7 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125<br/>4.8 Common random numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132<br/>4.9 Combinations of techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135<br/>Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136<br/>5 Quasi–Monte Carlo Constructions . . . . . . . . . . . . . . . . . . . . . . . . 139<br/>5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139<br/>5.2 Main constructions: basic principles . . . . . . . . . . . . . . . . . . . . . . . 143<br/>5.3 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146<br/>5.4 Digital nets and sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153<br/>5.4.1 Sobol’ sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157<br/>5.4.2 Faure sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161<br/>5.4.3 Niederreiter sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163<br/>5.4.4 Improvements to the original constructions<br/>of Halton, Sobol’, Niederreiter, and Faure . . . . . . . . . . . 164<br/>5.4.5 Digital net constructions and extensions . . . . . . . . . . . . . 170<br/>5.5 Recurrence-based point sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174<br/>5.6 Quality measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179<br/>5.6.1 Discrepancy and related measures . . . . . . . . . . . . . . . . . . 180<br/>5.6.2 Criteria based on Fourier and<br/>Walsh decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187<br/>5.6.3 Motivation for going beyond error bounds . . . . . . . . . . . 197<br/>Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197<br/>6 Using Quasi–Monte Carlo in Practice . . . . . . . . . . . . . . . . . . . . . 201<br/>6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201<br/>6.2 Randomized quasi–Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . 202<br/>6.2.1 Random shift (or rotation sampling) . . . . . . . . . . . . . . . . 204<br/>6.2.2 Digital shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206<br/>6.2.3 Scrambling and permutations . . . . . . . . . . . . . . . . . . . . . . 206<br/>6.2.4 Partitions and Latin supercube sampling . . . . . . . . . . . . 209<br/>6.2.5 Array-RQMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210<br/>6.2.6 Studying the variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211<br/>6.3 ANOVA decomposition and effective dimension . . . . . . . . . . . . 214<br/>6.3.1 Effective dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216<br/>6.3.2 Brownian bridge and related techniques . . . . . . . . . . . . . 222<br/>6.3.3 Methods for estimating σ2 and approximating fI (u) . . . . . . . . . . . . . . . . . . . . . . . . . . 225<br/>6.3.4 Using the ANOVA insight to find<br/>good constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228<br/>6.4 Using quasi–Monte Carlo sampling for simulation . . . . . . . . . . . 229<br/>6.5 Suggestions for practitioners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237<br/>Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239<br/>Appendix: Tractability, weighted spaces<br/>and component-by-component constructions . . . . . . . . . . . . . . . 241<br/>7 Financial Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247<br/>7.1 European option pricing under the lognormal model . . . . . . . . 247<br/>7.2 More complex models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256<br/>7.2.1 Heston’s process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257<br/>7.2.2 Regime switching model . . . . . . . . . . . . . . . . . . . . . . . . . . . 258<br/>7.2.3 Variance gamma model . . . . . . . . . . . . . . . . . . . . . . . . . . . 260<br/>7.3 Randomized quasi–Monte Carlo methods in finance . . . . . . . . . 260<br/>7.4 Commonly used variance reduction techniques . . . . . . . . . . . . . 273<br/>7.4.1 Antithetic variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273<br/>7.4.2 Control variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273<br/>7.4.3 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275<br/>7.4.4 Conditional Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . 279<br/>7.4.5 Common random numbers . . . . . . . . . . . . . . . . . . . . . . . . . 281<br/>7.4.6 Moment-matching methods . . . . . . . . . . . . . . . . . . . . . . . . 282<br/>7.5 American option pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283<br/>7.6 Estimating sensitivities and percentiles . . . . . . . . . . . . . . . . . . . . 288<br/>Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298<br/>8 Beyond Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301<br/>8.1 Markov Chain Monte Carlo (MCMC) . . . . . . . . . . . . . . . . . . . . . 303<br/>8.1.1 Metropolis-Hastings algorithm . . . . . . . . . . . . . . . . . . . . . 305<br/>8.1.2 Exact sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310<br/>8.2 Sequential Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312<br/>8.3 Computer experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320<br/>Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332<br/>A Review of Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335<br/>B Error and Variance Analysis for Halton Sequences . . . . . . . . 341<br/>References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347<br/>Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369<br/></div></div><br>yahoocom
&nbsp;金币&nbsp;+1
&nbsp;金钱&nbsp;+50
&nbsp;奖励&nbsp;2009-4-7 15:51:56


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2025-12-25 10:51