| 所在主题: | |
| 文件名: “减碳”政策制约了中国企业出口吗.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3451732.html | |
| 附件大小: | |
|
各位大神,求教个问题,在用广义倾向得分匹配(GPS)分析时,老是出现两个问题:1. The assumption of Normality is not statistically satisfied at .05 level
It is advisable to try a different trasformation of the treatment variable 2. 1 group found, 2 required 对于第一个问题,我依次尝试了ln, lnskew0, bcskew0,boxcox几种不同形式,还是出现这种提示。 求教对这两个问题应该如何解决,万分感谢!! 回归结果如下: qui generate cut=20 if cen<=20 . . qui replace cut=40 if cen>20 & cen<=40 . . qui replace cut=60 if cen>40 & cen<=60 . . qui replace cut=80 if cen>60 . . qui replace cut=100 if cen>80 . matrix define tp=(10\20\30\40\50\60\70\80\90\100) . doseresponse lnta , outcome(lntotal) t(cen) gpscore(pscore) predict(hat_treat) sigma(sd) cutpoints(cut) index(p50) nq_gps(5) t _transf(boxcox) dose_response(dose_response) tpoints(tp) delta(1) reg_type_t(quadratic) reg_type_gps(quadratic) interaction(1) bootstrap(yes) boot_reps(100) filename("output") analysis(yes) graph("graph_output") detail ******************************************** ESTIMATE OF THE GENERALIZED PROPENSITY SCORE ******************************************** Generalized Propensity Score ****************************************************** Algorithm to estimate the generalized propensity score ****************************************************** Estimation of the propensity score The BoxCox transformation of the treatment variable cen is used T ------------------------------------------------------------- Percentiles Smallest 1% 1.166742 1.166742 5% 1.179652 1.166742 10% 1.179652 1.166742 Obs 22,231 25% 1.219498 1.166742 Sum of Wgt. 22,231 50% 1.252957 Mean 1.26956 Largest Std. Dev. .0656851 75% 1.340244 1.384281 90% 1.360923 1.384766 Variance .0043145 95% 1.368533 1.384929 Skewness .2122693 99% 1.376733 1.384948 Kurtosis 1.628219 initial: log likelihood = -<inf>(could not be evaluated) feasible: log likelihood = -31542.819 rescale: log likelihood = -21284.562 rescale eq: log likelihood = -3300.4439 Iteration 0: log likelihood = -3300.4439(not concave) Iteration 1: log likelihood =14393.478(not concave) Iteration 2: log likelihood =27857.065 Iteration 3: log likelihood =28702.593 Iteration 4: log likelihood =29035.453 Iteration 5: log likelihood =29039.052 Iteration 6: log likelihood =29039.053 Number of obs = 22,231 Wald chi2(1) = 101.38 Log likelihood =29039.053 Prob > chi2 = 0.0000 ------------------------------------------------------------------------------ T | Coef. Std. Err. z P>|z| [95% Conf. Interval] -------------+---------------------------------------------------------------- eq1 | lnta | .0032904 .0003268 10.07 0.000 .0026499 .0039309 _cons | 1.198379 .0070833 169.18 0.000 1.184496 1.212261 -------------+---------------------------------------------------------------- eq2 | _cons | .0655344 .0003108 210.86 0.000 .0649253 .0661436 ------------------------------------------------------------------------------ Test for normality of the disturbances Kolmogorov-Smirnov equality-of-distributions test Normal Distribution of the disturbances One-sample Kolmogorov-Smirnov test against theoretical distribution normal((res_etreat - r(mean))/sqrt(r(Var))) Smaller group D P-valueCorrected ---------------------------------------------- res_etreat: 0.1579 0.000 Cumulative: -0.1224 0.000 Combined K-S: 0.1579 0.000 0.000 Note: Ties exist in dataset; there are 22224 unique values out of 22231 observations. The assumption of Normality is not statistically satisfied at .05 level It is advisable to try a different trasformation of the treatment variable Estimated generalized propensity score ------------------------------------------------------------- Percentiles Smallest 1% 1.569283 1.146247 5% 1.821294 1.226061 10% 2.006727 1.228207 Obs 22,231 25% 2.664825 1.238576 Sum of Wgt. 22,231 50% 4.133582 Mean 3.962133 Largest Std. Dev. 1.381247 75% 5.111096 6.087499 90% 5.848306 6.087522 Variance 1.907842 95% 5.929101 6.087524 Skewness -.1122427 99% 6.018518 6.087524 Kurtosis 1.696721 ******************************************** End of the algorithm to estimate the gpscore ******************************************** ****************************************************************************** The set of the potential treatment values is divided into 6 intervals The values of the gpscore evaluated at the representative point of each treatment interval are divided into 5 intervals ****************************************************************************** *********************************************************** Summary statistics of the distribution of the GPS evaluated at the representative point of each treatment interval *********************************************************** Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- gps_1 | 22,231 4.543274 .237251 2.885289 5.826589 Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- gps_2 | 22,231 4.774775 .2135613 3.095474 5.918881 Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- gps_3 | 22,231 3.037522 .2429328 1.566484 4.691811 Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- gps_4 | 22,231 2.071809 .2117767 .9311559 3.648537 Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- gps_5 | 22,231 1.608863 .1853206 .6689561 3.050296 Variable | Obs Mean Std. Dev. Min Max -------------+--------------------------------------------------------- gps_6 | 22,231 1.301614 .163156 .5098148 2.61117 ************************************************************************************ Test that the conditional mean of the pre-treatment variables given the generalized propensity score is not different between units who belong to a particular treatment interval and units who belong to all other treatment intervals ************************************************************************************ 1 group found, 2 required |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明