| 所在主题: | |
| 文件名: Neural Network Modeling using SAS Enterprise Miner.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-345904.html | |
| 附件大小: | |
|
Neural Network Modeling using SAS Enterprise Miner
【语言】:英文 【页数/文件数】:600 【目录】: Table of Contents Chapter 1: Introduction Chapter 2: Traditional Regression Modeling 1 2.1 The Purpose of Statistical Modeling ........................................................................... 3 2.2 Statistical Modeling Assumptions ............................................................................... 9 2.3 Checking for Outliers and Influential Data Points ..................................................... 23 2.4 Checking for Multicollinearity .................................................................................... 28 2.5 Modeling Assessment Statistics .................................................................................. 32 2.6 Bias-Variance Trade-off .............................................................................................. 39 Chapter 3: Neural Network Architecture 41 3.1 Single Layer Perceptron .............................................................................................. 43 3.2 Perceptron Training Algorithm .................................................................................... 44 3.3 Multiple Layer Perceptron Architecture ..................................................................... 47 3.4 An Explanation of the Neural Network Layers............................................................ 50 3.5 Relationship Between the Predictive Models .............................................................. 51 3.6 An Overview of the Neural Network Layers .............................................................. 53 3.7 An Overview of the Neural Network Architecture ..................................................... 63 3.8 The Objective Function ............................................................................................... 77 3.9 Neural Network Architectures .................................................................................... 84 3.10 Neural Network Hold out Method .............................................................................. 90 3.11 Optimization ................................................................................................................ 93 3.12 Numerical Examples of the Optimization Methods .................................................... 113 3.13 Numerical Examples of the Network Designs ............................................................ 126 3.14 Regularization Techniques .......................................................................................... 140 3.15 Pruning Inputs ............................................................................................................. 142 3.16 Interpretation of the Neural Network Inputs ............................................................... 145 3.17 Development to a Well-Designed Network Model ..................................................... 147 3.18 Advantages of Neural Network Modeling .................................................................. 149 3.19 The Default Settings to EM Neural Network Node .................................................... 153 Chapter 4: The NEURAL and DMREG Procedure 155 4.1 An Overview of the SAS Neural Network Procedure ................................................. 157 4.2 An Overview of the SAS DMREG Procedure ............................................................ 184 4.3 Multiple Linear Regression Example .......................................................................... 189 4.4 Autoregressive Time Series Example ......................................................................... 192 4.5 Basic Steps in Constructing the EM Diagram ............................................................. 195 Chapter 5: SAS Enterprise Miner 201 5.1 Opening the Enterprise Miner Application ................................................................. 203 5.2 Enterprise Miner Menu Options ................................................................................. 206 5.3 Option Settings to the EM Environment ..................................................................... 208 5.4 Enterprise Miner Projects and Diagrams .................................................................... 212 Chapter 6: Data Mining Using SAS Enterprise Miner 231 6.1 SEMMA ...................................................................................................................... 233 6.2 Possible Tools to the EM SEMMA Design ............................................................... 235 Chapter 7: Configuration Setup of the EM Nodes 249 7.1 Enterprise Miner Input Data Source Node .................................................................. 251 7.2 Enterprise Miner Data Partition Node ........................................................................ 279 7.3 Enterprise Miner Regression Node ............................................................................. 284 7.4 Viewing the Regression Node Results ........................................................................ 306 7.5 Model Manager ........................................................................................................... 311 7.6 Enterprise Miner Neural Network Node ..................................................................... 314 7.7 An Overview of the Advanced Neural Network Node ............................................... 331 7.8 Viewing the Neural Network Results ......................................................................... 362 7.9 Neural Network Interactive Training .......................................................................... 372 7.10 Enterprise Miner Assessment Node ............................................................................ 383 7.11 Enterprise Miner SAS Code Node .............................................................................. 409 7.12 Enterprise Miner Reporter Node ................................................................................. 426 Chapter 8: Comparing Prediction Estimates 457 8.1 Comparing Multiple Linear Regression Estimates ..................................................... 462 8.2 Comparing Nonlinear Regression Estimates .............................................................. 466 8.3 Comparing Logistic Regression Estimates ................................................................. 475 8.4 Comparing Autoregressive Time Series Estimates ..................................................... 504 8.5 Comparing Discriminant Analysis Estimates ............................................................. 533 Appendix 557 References 577 Book Index 581 其实这个书在数据挖掘版块有,但是那个楼主收的钱太多了,现在照顾一下穷人,特意免费贡献。 |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明