| 所在主题: | |
| 文件名: 数据挖掘概念技术(英文版).pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-346078.html | |
| 附件大小: | |
|
Foreword vii
Preface ix Chapter1 Introduction 1.1 What Motivated Data Mining? Why Is It Important? 1.2 So, What Is Data Mining? 1.3 Data Mining-On What Kind of Data? 1.3.1 Relational Databases 1.3.2 Data Warehouses 1.3.3 TransactionalDatabases 1.3.4 Advanced Data and Information Systems and Advanced Applications 1.4 Data Mining Functionalities---What Kinds of Patterns Can Be Mined? 1.4.1 Concept/Class Description: Characterization and Discrimination 1.4.2 Mining Frequent Patterns, Associations, and Correlations 1.4.3 Classification and Prediction 24 1.4.4 Cluster Analysis 1.4.5 Outlier Analysis 26 1.4.6 Evolution Analysis 1.5 Are All of the Patterns Interesting? 1.6 Classification of Data Mining Systems 1.7 Data Mining Task Primitives 1.8 Integration of a Data Mining System with a Database or Data Warehouse System 1.9 Major Issues in Data Mining 1.10 Summary Exercises Bibliographic Notes Chapter2 Data Preprocessing 2.1 Why Preprocess the Data? 2.2 Descriptive Data Summarization 2.2.1 Measuring the Central Tendency 2.2.2 Measuring the Dispersion of Data 2.2.3 Graphic Displays of Basic Descriptive Data Summaries 2.3 Data Cleaning 2.3.1 Missing Values 2.3.2 Noisy Data 2.3.3 Data Cleaning as a Process 2.4 Data Integration and Transformation 2.4.1 Data Integration 2.4.2 Data Transformation 2.5 Data Reduction 2.5.1 Data Cube Aggregation 2.5.2 Attribute Subset Selection 2.5.3 DimensionalityReduction 2.5.4 Numerosity Reduction 2.6 Data Discretization and Concept Hierarchy Generation 2.6.1 Discretization and Concept Hierarchy Generation for Numerical Data 2.6.2 Concept Hierarchy Generation for Categorical Data 2.7 Summary 97 Exercises 97 Bibliographic Notes Chapter3 Data Warehouse and OLAP Technology: An Overview 3.1 What Is a Data Warehouse? 3.1.1 Differences between Operational Database Systems and Data Warehouses 3.1.2 But, Why Have a Separate Data Warehouse? 3.2 A Multidimensional Data Model 3.2.1 From Tables and Spreadsheets to Data Cubes 3.2.2 Stars, Snowflakes, and Fact Constellations: Schemas for Multidimensional Databases 3.2.3 Examples for Defining Star, Snowflake, and Fact Constellation Schemas …… Chapter4 Data Cube Computation and Data Generalization Chapter5 Mining Frequent Patterns, Associations, and Correlations Chapter6 Classification adn Predidction Chapter7 Cluster Analysis Chapter8 Mining Stream, Time-Series, and Sepuence Data Chapter9 Graph Mining, Social Network Analysis, and Multirelational Chapter10 Mining Object, Spatial, Multimedia, Test, and Wed Data Chapter11 Applications and Trends in Data Mining An Introduction to Microsoft's OLE DB for Bibliography Index |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明