| 所在主题: | |
| 文件名: English_Paper.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3656754.html | |
| 附件大小: | |
|
[b]摘要翻译:[/b]
第一部分介绍了智能声发射定位器,第二部分讨论了盲源分离、时延估计和两个同时有源的连续声发射源的定位。复杂飞机框架结构声发射定位是无损检测中的一个难题。本文介绍了一种智能声发射源定位器。该智能定位器由传感器天线和广义回归神经网络组成,解决了基于示例学习的定位问题。在不同的试件上测试了定位器的性能。试验表明,定位的准确性取决于试样中的声速和衰减,测试区域的尺寸,以及存储数据的性质。该智能定位器的定位精度与传统三角法相当,但由于避免了对声线路径的分析,使智能定位器的适用性更广。这是一种很有前途的飞机框架结构声发射无损检测方法。 --- [b]英文标题:[/b] 《Intelligent location of simultaneously active acoustic emission sources: Part I》 --- [b]作者:[/b] T. Kosel and I. Grabec --- [b]最新提交年份:[/b] 2007 --- [b]分类信息:[/b] 一级分类:Computer Science 计算机科学 二级分类:Neural and Evolutionary Computing 神经与进化计算 分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5. 涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。 -- 一级分类:Computer Science 计算机科学 二级分类:Artificial Intelligence 人工智能 分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11. 涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。 -- --- [b]英文摘要:[/b] The intelligent acoustic emission locator is described in Part I, while Part II discusses blind source separation, time delay estimation and location of two simultaneously active continuous acoustic emission sources. The location of acoustic emission on complicated aircraft frame structures is a difficult problem of non-destructive testing. This article describes an intelligent acoustic emission source locator. The intelligent locator comprises a sensor antenna and a general regression neural network, which solves the location problem based on learning from examples. Locator performance was tested on different test specimens. Tests have shown that the accuracy of location depends on sound velocity and attenuation in the specimen, the dimensions of the tested area, and the properties of stored data. The location accuracy achieved by the intelligent locator is comparable to that obtained by the conventional triangulation method, while the applicability of the intelligent locator is more general since analysis of sonic ray paths is avoided. This is a promising method for non-destructive testing of aircraft frame structures by the acoustic emission method. --- [b]PDF链接:[/b] https://arxiv.org/pdf/0704.0047.pdf |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明