| 所在主题: | |
| 文件名: English_Paper.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3657822.html | |
| 附件大小: | |
|
摘要翻译:
需要访问信息资源的信息集成应用程序,如中介或混搭,目前依赖于用户手动发现并在应用程序中集成它们。手工资源发现是一个缓慢的过程,需要用户筛选通过基于关键字的搜索获得的结果。虽然搜索方法已经发展到包括来自文件内容、其元数据以及参考页的内容和链接结构的证据,但它们仍然没有充分涵盖为响应查询而动态生成文件的信息源----通常称为“隐藏网络”。最近流行的社交书签网站允许用户注释和共享关于各种信息源的元数据,为资源发现提供了丰富的证据。本文描述了一个社会化书签系统del.icio.us中用户注释过程的概率模型。然后,我们使用该模型自动查找与特定信息域相关的资源。我们对从\\emph{del.icio.us}获得的数据的实验结果表明,该方法是一种帮助自动化资源发现任务的有希望的方法。 --- 英文标题: 《Exploiting Social Annotation for Automatic Resource Discovery》 --- 作者: Anon Plangprasopchok and Kristina Lerman --- 最新提交年份: 2007 --- 分类信息: 一级分类:Computer Science 计算机科学 二级分类:Artificial Intelligence 人工智能 分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11. 涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。 -- 一级分类:Computer Science 计算机科学 二级分类:Computers and Society 计算机与社会 分类描述:Covers impact of computers on society, computer ethics, information technology and public policy, legal aspects of computing, computers and education. Roughly includes material in ACM Subject Classes K.0, K.2, K.3, K.4, K.5, and K.7. 涵盖计算机对社会的影响、计算机伦理、信息技术和公共政策、计算机的法律方面、计算机和教育。大致包括ACM学科类K.0、K.2、K.3、K.4、K.5和K.7中的材料。 -- 一级分类:Computer Science 计算机科学 二级分类:Digital Libraries 数字图书馆 分类描述:Covers all aspects of the digital library design and document and text creation. Note that there will be some overlap with Information Retrieval (which is a separate subject area). Roughly includes material in ACM Subject Classes H.3.5, H.3.6, H.3.7, I.7. 涵盖了数字图书馆设计和文献及文本创作的各个方面。注意,与信息检索(这是一个单独的主题领域)会有一些重叠。大致包括ACM课程H.3.5、H.3.6、H.3.7、I.7中的材料。 -- --- 英文摘要: Information integration applications, such as mediators or mashups, that require access to information resources currently rely on users manually discovering and integrating them in the application. Manual resource discovery is a slow process, requiring the user to sift through results obtained via keyword-based search. Although search methods have advanced to include evidence from document contents, its metadata and the contents and link structure of the referring pages, they still do not adequately cover information sources -- often called ``the hidden Web\'\'-- that dynamically generate documents in response to a query. The recently popular social bookmarking sites, which allow users to annotate and share metadata about various information sources, provide rich evidence for resource discovery. In this paper, we describe a probabilistic model of the user annotation process in a social bookmarking system del.icio.us. We then use the model to automatically find resources relevant to a particular information domain. Our experimental results on data obtained from \\emph{del.icio.us} show this approach as a promising method for helping automate the resource discovery task. --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明