| 所在主题: | |
| 文件名: English_Paper.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3659288.html | |
| 附件大小: | |
|
摘要翻译:
快速准确地检测社区疫情对于应对新冠肺炎疫情死灰复燃的威胁至关重要。疫情检测的一个实际挑战是平衡准确性和速度。特别是,随着拟合窗口的延长,估计精度提高,但速度下降。本文提出了一个基于广义随机森林(GRF)的机器学习框架来平衡这种权衡,并将其应用于县级新冠肺炎疫情的检测。该算法根据影响疾病传播的相关特征,如社交距离政策的变化,为每个县选择自适应拟合窗口大校实验结果表明,在新冠肺炎疫情爆发前7天的病例数预测中,我们的方法优于任何非自适应窗口大小选择。 --- 英文标题: 《Estimating County-Level COVID-19 Exponential Growth Rates Using Generalized Random Forests》 --- 作者: Zhaowei She, Zilong Wang, Turgay Ayer, Asmae Toumi, Jagpreet Chhatwal --- 最新提交年份: 2020 --- 分类信息: 一级分类:Computer Science 计算机科学 二级分类:Machine Learning 机器学习 分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods. 关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。 -- 一级分类:Economics 经济学 二级分类:Econometrics 计量经济学 分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data. 计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。 -- --- 英文摘要: Rapid and accurate detection of community outbreaks is critical to address the threat of resurgent waves of COVID-19. A practical challenge in outbreak detection is balancing accuracy vs. speed. In particular, while estimation accuracy improves with longer fitting windows, speed degrades. This paper presents a machine learning framework to balance this tradeoff using generalized random forests (GRF), and applies it to detect county level COVID-19 outbreaks. This algorithm chooses an adaptive fitting window size for each county based on relevant features affecting the disease spread, such as changes in social distancing policies. Experiment results show that our method outperforms any non-adaptive window size choices in 7-day ahead COVID-19 outbreak case number predictions. --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明