| 所在主题: | |
| 文件名: Competitive_Location_Problems:_Balanced_Facility_Location_and_the_One-Round_Manh.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3665165.html | |
| 附件大小: | |
|
英文标题:
《Competitive Location Problems: Balanced Facility Location and the One-Round Manhattan Voronoi Game》 --- 作者: Thomas Byrne, S\\\'andor P. Fekete, J\\\"org Kalcsics, and Linda Kleist --- 最新提交年份: 2020 --- 分类信息: 一级分类:Computer Science 计算机科学 二级分类:Computational Geometry 计算几何 分类描述:Roughly includes material in ACM Subject Classes I.3.5 and F.2.2. 大致包括ACM课程I.3.5和F.2.2中的材料。 -- 一级分类:Computer Science 计算机科学 二级分类:Discrete Mathematics 离散数学 分类描述:Covers combinatorics, graph theory, applications of probability. Roughly includes material in ACM Subject Classes G.2 and G.3. 涵盖组合学,图论,概率论的应用。大致包括ACM学科课程G.2和G.3中的材料。 -- 一级分类:Computer Science 计算机科学 二级分类:Computer Science and Game Theory 计算机科学与博弈论 分类描述:Covers all theoretical and applied aspects at the intersection of computer science and game theory, including work in mechanism design, learning in games (which may overlap with Learning), foundations of agent modeling in games (which may overlap with Multiagent systems), coordination, specification and formal methods for non-cooperative computational environments. The area also deals with applications of game theory to areas such as electronic commerce. 涵盖计算机科学和博弈论交叉的所有理论和应用方面,包括机制设计的工作,游戏中的学习(可能与学习重叠),游戏中的agent建模的基础(可能与多agent系统重叠),非合作计算环境的协调、规范和形式化方法。该领域还涉及博弈论在电子商务等领域的应用。 -- 一级分类:Economics 经济学 二级分类:Theoretical Economics 理论经济学 分类描述:Includes theoretical contributions to Contract Theory, Decision Theory, Game Theory, General Equilibrium, Growth, Learning and Evolution, Macroeconomics, Market and Mechanism Design, and Social Choice. 包括对契约理论、决策理论、博弈论、一般均衡、增长、学习与进化、宏观经济学、市场与机制设计、社会选择的理论贡献。 -- 一级分类:Mathematics 数学 二级分类:Optimization and Control 优化与控制 分类描述:Operations research, linear programming, control theory, systems theory, optimal control, game theory 运筹学,线性规划,控制论,系统论,最优控制,博弈论 -- --- 英文摘要: We study competitive location problems in a continuous setting, in which facilities have to be placed in a rectangular domain $R$ of normalized dimensions of $1$ and $\\rho\\geq 1$, and distances are measured according to the Manhattan metric. We show that the family of \'balanced\' facility configurations (in which the Voronoi cells of individual facilities are equalized with respect to a number of geometric properties) is considerably richer in this metric than for Euclidean distances. Our main result considers the \'One-Round Voronoi Game\' with Manhattan distances, in which first player White and then player Black each place $n$ points in $R$; each player scores the area for which one of its facilities is closer than the facilities of the opponent. We give a tight characterization: White has a winning strategy if and only if $\\rho\\geq n$; for all other cases, we present a winning strategy for Black. --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明