| 所在主题: | |
| 文件名: Machine_Learning_Advances_for_Time_Series_Forecasting.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3666553.html | |
| 附件大小: | |
|
英文标题:
《Machine Learning Advances for Time Series Forecasting》 --- 作者: Ricardo P. Masini, Marcelo C. Medeiros and Eduardo F. Mendes --- 最新提交年份: 2021 --- 英文摘要: In this paper we survey the most recent advances in supervised machine learning and high-dimensional models for time series forecasting. We consider both linear and nonlinear alternatives. Among the linear methods we pay special attention to penalized regressions and ensemble of models. The nonlinear methods considered in the paper include shallow and deep neural networks, in their feed-forward and recurrent versions, and tree-based methods, such as random forests and boosted trees. We also consider ensemble and hybrid models by combining ingredients from different alternatives. Tests for superior predictive ability are briefly reviewed. Finally, we discuss application of machine learning in economics and finance and provide an illustration with high-frequency financial data. --- 中文摘要: 本文综述了有监督机器学习和高维时间序列预测模型的最新进展。我们同时考虑线性和非线性选择。在线性方法中,我们特别关注惩罚回归和模型集成。本文考虑的非线性方法包括前馈和递归的浅层和深层神经网络,以及基于树的方法,如随机森林和增强树。我们还通过组合来自不同替代品的成分来考虑整体模型和混合模型。简要回顾了优越预测能力的测试。最后,我们讨论了机器学习在经济和金融领域的应用,并以高频金融数据为例进行了说明。 --- 分类信息: 一级分类:Economics 经济学 二级分类:Econometrics 计量经济学 分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data. 计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。 -- 一级分类:Computer Science 计算机科学 二级分类:Machine Learning 机器学习 分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods. 关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。 -- 一级分类:Statistics 统计学 二级分类:Applications 应用程序 分类描述:Biology, Education, Epidemiology, Engineering, Environmental Sciences, Medical, Physical Sciences, Quality Control, Social Sciences 生物学,教育学,流行病学,工程学,环境科学,医学,物理科学,质量控制,社会科学 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明