| 所在主题: | |
| 文件名: Multifractal_Diffusion_Entropy_Analysis:_Optimal_Bin_Width_of_Probability_Histograms.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3672257.html | |
| 附件大小: | |
|
英文标题:
《Multifractal Diffusion Entropy Analysis: Optimal Bin Width of Probability Histograms》 --- 作者: Petr Jizba and Jan Korbel --- 最新提交年份: 2014 --- 英文摘要: In the framework of Multifractal Diffusion Entropy Analysis we propose a method for choosing an optimal bin-width in histograms generated from underlying probability distributions of interest. The method presented uses techniques of R\\\'{e}nyi\'s entropy and the mean squared error analysis to discuss the conditions under which the error in the multifractal spectrum estimation is minimal. We illustrate the utility of our approach by focusing on a scaling behavior of financial time series. In particular, we analyze the S&P500 stock index as sampled at a daily rate in the time period 1950-2013. In order to demonstrate a strength of the method proposed we compare the multifractal $\\delta$-spectrum for various bin-widths and show the robustness of the method, especially for large values of $q$. For such values, other methods in use, e.g., those based on moment estimation, tend to fail for heavy-tailed data or data with long correlations. Connection between the $\\delta$-spectrum and R\\\'{e}nyi\'s $q$ parameter is also discussed and elucidated on a simple example of multiscale time series. --- 中文摘要: 在多重分形扩散熵分析的框架下,我们提出了一种从感兴趣的潜在概率分布生成的直方图中选择最佳仓位宽度的方法。该方法利用R\\{e}nyi熵和均方误差分析技术讨论了多重分形谱估计误差最小的条件。我们通过关注金融时间序列的标度行为来说明我们方法的效用。特别是,我们分析了1950-2013年期间以日利率抽样的标准普尔500指数。为了证明所提出的方法的优点,我们比较了不同仓位宽度下的多重分形$\\delta$-谱,并展示了该方法的鲁棒性,尤其是对于$q$的大值。对于这些值,其他正在使用的方法,例如基于矩估计的方法,往往无法用于重尾数据或具有长相关性的数据。在一个简单的多尺度时间序列的例子中,还讨论并阐明了$\\delta$谱与R\\\'{e}nyi的$q$参数之间的关系。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Statistical Finance 统计金融 分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data 统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用 -- 一级分类:Physics 物理学 二级分类:Mathematical Physics 数学物理 分类描述:Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories 这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别 -- 一级分类:Mathematics 数学 二级分类:Mathematical Physics 数学物理 分类描述:math.MP is an alias for math-ph. Articles in this category focus on areas of research that illustrate the application of mathematics to problems in physics, develop mathematical methods for such applications, or provide mathematically rigorous formulations of existing physical theories. Submissions to math-ph should be of interest to both physically oriented mathematicians and mathematically oriented physicists; submissions which are primarily of interest to theoretical physicists or to mathematicians should probably be directed to the respective physics/math categories math.mp是math-ph的别名。这一类别的文章集中在说明数学在物理问题中的应用的研究领域,为这类应用开发数学方法,或提供现有物理理论的数学严格公式。提交的数学-PH应该对物理方向的数学家和数学方向的物理学家都感兴趣;主要对理论物理学家或数学家感兴趣的投稿可能应该指向各自的物理/数学类别 -- 一级分类:Physics 物理学 二级分类:Data Analysis, Statistics and Probability 数据分析、统计与概率 分类描述:Methods, software and hardware for physics data analysis: data processing and storage; measurement methodology; statistical and mathematical aspects such as parametrization and uncertainties. 物理数据分析的方法、软硬件:数据处理与存储;测量方法;统计和数学方面,如参数化和不确定性。 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明