| 所在主题: | |
| 文件名: Time-changed_CIR_default_intensities_with_two-sided_mean-reverting_jumps.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3672919.html | |
| 附件大小: | |
|
英文标题:
《Time-changed CIR default intensities with two-sided mean-reverting jumps》 --- 作者: Rafael Mendoza-Arriaga, Vadim Linetsky --- 最新提交年份: 2014 --- 英文摘要: The present paper introduces a jump-diffusion extension of the classical diffusion default intensity model by means of subordination in the sense of Bochner. We start from the bi-variate process $(X,D)$ of a diffusion state variable $X$ driving default intensity and a default indicator process $D$ and time change it with a L\\\'{e}vy subordinator ${\\mathcal{T}}$. We characterize the time-changed process $(X^{\\phi}_t,D^{\\phi}_t)=(X({\\mathcal{T}}_t),D({\\mathcal{T}}_t))$ as a Markovian--It\\^{o} semimartingale and show from the Doob--Meyer decomposition of $D^{\\phi}$ that the default time in the time-changed model has a jump-diffusion or a pure jump intensity. When $X$ is a CIR diffusion with mean-reverting drift, the default intensity of the subordinate model (SubCIR) is a jump-diffusion or a pure jump process with mean-reverting jumps in both directions that stays nonnegative. The SubCIR default intensity model is analytically tractable by means of explicitly computed eigenfunction expansions of relevant semigroups, yielding closed-form pricing of credit-sensitive securities. --- 中文摘要: 本文利用Bochner意义下的隶属关系,对经典扩散违约强度模型进行了跳扩散扩展。我们从扩散状态变量$X$驱动默认强度的双变量过程$(X,D)$和默认指示器过程$D$开始,并用一个L \\{e}维从属变量${\\mathcal{T}}对其进行时间更改。我们将时变过程$(X^{\\phi}u t,D^{\\phi}u t)=(X({\\mathcal{t}}),D({\\mathcal{t}})t)刻画为马尔科夫半鞅,并从D^{phi}$t的Doob-Meyer分解表明,时变模型中的默认时间具有跳跃扩散或纯跳跃强度。当$X$是具有均值回复漂移的CIR扩散时,次级模型(SubCIR)的默认强度是跳跃扩散或纯跳跃过程,在两个方向上均具有均值回复跳跃,且保持非负。通过显式计算相关半群的本征函数展开,可以解析地处理SubCIR违约强度模型,从而得出信用敏感证券的封闭式定价。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Pricing of Securities 证券定价 分类描述:Valuation and hedging of financial securities, their derivatives, and structured products 金融证券及其衍生产品和结构化产品的估值和套期保值 -- 一级分类:Mathematics 数学 二级分类:Probability 概率 分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory 概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明