搜索
人大经济论坛 附件下载

附件下载

所在主题:
文件名:  Path_Diffusion,_Part_I.pdf
资料下载链接地址: https://bbs.pinggu.org/a-3673057.html
附件大小:
795.35 KB   举报本内容
英文标题:
《Path Diffusion, Part I》
---
作者:
Johan GB Beumee, Chris Cormack, Peyman Khorsand, Manish Patel
---
最新提交年份:
2014
---
英文摘要:
This paper investigates the position (state) distribution of the single step binomial (multi-nomial) process on a discrete state / time grid under the assumption that the velocity process rather than the state process is Markovian. In this model the particle follows a simple multi-step process in velocity space which also preserves the proper state equation of motion. Many numerical numerical examples of this process are provided. For a smaller grid the probability construction converges into a correlated set of probabilities of hyperbolic functions for each velocity at each state point. It is shown that the two dimensional process can be transformed into a Telegraph equation and via transformation into a Klein-Gordon equation if the transition rates are constant. In the last Section there is an example of multi-dimensional hyperbolic partial differential equation whose numerical average satisfies Newton\'s equation. There is also a momentum measure provided both for the two-dimensional case as for the multi-dimensional rate matrix.
---
中文摘要:
在速度过程而非状态过程是马尔可夫过程的假设下,研究了离散状态/时间网格上单步二项(多项式)过程的位置(状态)分布。在这个模型中,粒子在速度空间中遵循一个简单的多步过程,这也保留了适当的运动状态方程。文中给出了这一过程的许多数值例子。对于较小的网格,概率结构收敛为每个状态点的每个速度的双曲函数的相关概率集。结果表明,当跃迁速率为常数时,二维过程可以转化为电报方程,也可以转化为Klein-Gordon方程。在最后一节中,有一个多维双曲偏微分方程的例子,其数值平均值满足牛顿方程。对于二维情况和多维速率矩阵,也提供了动量度量。
---
分类信息:

一级分类:Quantitative Finance 数量金融学
二级分类:Mathematical Finance 数学金融学
分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods
金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法
--

---
PDF下载:
-->


    熟悉论坛请点击新手指南
下载说明
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。
2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。
3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。
(如有侵权,欢迎举报)
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

GMT+8, 2026-1-8 04:10