| 所在主题: | |
| 文件名: Path_Diffusion,_Part_I.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3673057.html | |
| 附件大小: | |
|
英文标题:
《Path Diffusion, Part I》 --- 作者: Johan GB Beumee, Chris Cormack, Peyman Khorsand, Manish Patel --- 最新提交年份: 2014 --- 英文摘要: This paper investigates the position (state) distribution of the single step binomial (multi-nomial) process on a discrete state / time grid under the assumption that the velocity process rather than the state process is Markovian. In this model the particle follows a simple multi-step process in velocity space which also preserves the proper state equation of motion. Many numerical numerical examples of this process are provided. For a smaller grid the probability construction converges into a correlated set of probabilities of hyperbolic functions for each velocity at each state point. It is shown that the two dimensional process can be transformed into a Telegraph equation and via transformation into a Klein-Gordon equation if the transition rates are constant. In the last Section there is an example of multi-dimensional hyperbolic partial differential equation whose numerical average satisfies Newton\'s equation. There is also a momentum measure provided both for the two-dimensional case as for the multi-dimensional rate matrix. --- 中文摘要: 在速度过程而非状态过程是马尔可夫过程的假设下,研究了离散状态/时间网格上单步二项(多项式)过程的位置(状态)分布。在这个模型中,粒子在速度空间中遵循一个简单的多步过程,这也保留了适当的运动状态方程。文中给出了这一过程的许多数值例子。对于较小的网格,概率结构收敛为每个状态点的每个速度的双曲函数的相关概率集。结果表明,当跃迁速率为常数时,二维过程可以转化为电报方程,也可以转化为Klein-Gordon方程。在最后一节中,有一个多维双曲偏微分方程的例子,其数值平均值满足牛顿方程。对于二维情况和多维速率矩阵,也提供了动量度量。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Mathematical Finance 数学金融学 分类描述:Mathematical and analytical methods of finance, including stochastic, probabilistic and functional analysis, algebraic, geometric and other methods 金融的数学和分析方法,包括随机、概率和泛函分析、代数、几何和其他方法 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明