| 所在主题: | |
| 文件名: Exact_fit_of_simple_finite_mixture_models.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3673142.html | |
| 附件大小: | |
|
英文标题:
《Exact fit of simple finite mixture models》 --- 作者: Dirk Tasche --- 最新提交年份: 2014 --- 英文摘要: How to forecast next year\'s portfolio-wide credit default rate based on last year\'s default observations and the current score distribution? A classical approach to this problem consists of fitting a mixture of the conditional score distributions observed last year to the current score distribution. This is a special (simple) case of a finite mixture model where the mixture components are fixed and only the weights of the components are estimated. The optimum weights provide a forecast of next year\'s portfolio-wide default rate. We point out that the maximum-likelihood (ML) approach to fitting the mixture distribution not only gives an optimum but even an exact fit if we allow the mixture components to vary but keep their density ratio fix. From this observation we can conclude that the standard default rate forecast based on last year\'s conditional default rates will always be located between last year\'s portfolio-wide default rate and the ML forecast for next year. As an application example, then cost quantification is discussed. We also discuss how the mixture model based estimation methods can be used to forecast total loss. This involves the reinterpretation of an individual classification problem as a collective quantification problem. --- 中文摘要: 如何根据去年的违约观察和当前的分数分布预测明年的投资组合范围内的信用违约率?解决这个问题的经典方法是将去年观察到的条件分数分布与当前分数分布进行混合拟合。这是有限混合模型的一个特殊(简单)情况,其中混合组分是固定的,只估计组分的权重。最佳权重可以预测明年整个投资组合的违约率。我们指出,如果我们允许混合物成分变化,但保持其密度比不变,那么拟合混合物分布的最大似然(ML)方法不仅给出了最佳拟合,甚至给出了精确拟合。根据这一观察,我们可以得出结论,基于去年条件违约率的标准违约率预测将始终位于去年投资组合范围内的违约率和明年的ML预测之间。作为一个应用实例,讨论了成本量化。我们还讨论了如何使用基于混合模型的估计方法来预测总损失。这涉及将单个分类问题重新解释为集体量化问题。 --- 分类信息: 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Risk Management 风险管理 分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications 衡量和管理贸易、银行、保险、企业和其他应用中的金融风险 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明