| 所在主题: | |
| 文件名: Extracting_Predictive_Information_from_Heterogeneous_Data_Streams_using_Gaussian.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3677905.html | |
| 附件大小: | |
|
英文标题:
《Extracting Predictive Information from Heterogeneous Data Streams using Gaussian Processes》 --- 作者: Sid Ghoshal, Stephen Roberts --- 最新提交年份: 2018 --- 英文摘要: Financial markets are notoriously complex environments, presenting vast amounts of noisy, yet potentially informative data. We consider the problem of forecasting financial time series from a wide range of information sources using online Gaussian Processes with Automatic Relevance Determination (ARD) kernels. We measure the performance gain, quantified in terms of Normalised Root Mean Square Error (NRMSE), Median Absolute Deviation (MAD) and Pearson correlation, from fusing each of four separate data domains: time series technicals, sentiment analysis, options market data and broker recommendations. We show evidence that ARD kernels produce meaningful feature rankings that help retain salient inputs and reduce input dimensionality, providing a framework for sifting through financial complexity. We measure the performance gain from fusing each domain\'s heterogeneous data streams into a single probabilistic model. In particular our findings highlight the critical value of options data in mapping out the curvature of price space and inspire an intuitive, novel direction for research in financial prediction. --- 中文摘要: 金融市场是出了名的复杂环境,呈现出大量嘈杂但潜在信息丰富的数据。我们考虑使用带有自动相关确定(ARD)核的在线高斯过程从广泛的信息源预测金融时间序列的问题。我们通过融合四个独立的数据域(时间序列技术、情绪分析、期权市场数据和经纪人建议)中的每一个来衡量绩效收益,并以标准化均方根误差(NRMSE)、中值绝对偏差(MAD)和皮尔逊相关性进行量化。我们证明,ARD内核产生有意义的特征排名,有助于保留显著的输入并降低输入维度,为筛选财务复杂性提供了一个框架。我们测量将每个域的异构数据流融合到单个概率模型中的性能增益。特别是,我们的研究结果强调了期权数据在绘制价格空间曲率方面的关键价值,并为金融预测的研究提供了直观、新颖的方向。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Statistical Finance 统计金融 分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data 统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用 -- 一级分类:Statistics 统计学 二级分类:Machine Learning 机器学习 分类描述:Covers machine learning papers (supervised, unsupervised, semi-supervised learning, graphical models, reinforcement learning, bandits, high dimensional inference, etc.) with a statistical or theoretical grounding 覆盖机器学习论文(监督,无监督,半监督学习,图形模型,强化学习,强盗,高维推理等)与统计或理论基础 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明