| 所在主题: | |
| 文件名: Lie_Symmetry_Analysis_of_the_Black-Scholes-Merton_Model_for_European_Options_wit.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3686713.html | |
| 附件大小: | |
|
英文标题:
《Lie Symmetry Analysis of the Black-Scholes-Merton Model for European Options with Stochastic Volatility》 --- 作者: A. Paliathanasis, K. Krishnakumar, K.M. Tamizhmani and P.G.L. Leach --- 最新提交年份: 2016 --- 英文摘要: We perform a classification of the Lie point symmetries for the Black--Scholes--Merton Model for European options with stochastic volatility, $\\sigma$, in which the last is defined by a stochastic differential equation with an Orstein--Uhlenbeck term. In this model, the value of the option is given by a linear (1 + 2) evolution partial differential equation in which the price of the option depends upon two independent variables, the value of the underlying asset, $S$, and a new variable, $y$. We find that for arbitrary functional form of the volatility, $\\sigma(y)$, the (1 + 2) evolution equation always admits two Lie point symmetries in addition to the automatic linear symmetry and the infinite number of solution symmetries. However, when $\\sigma(y)=\\sigma_{0}$ and as the price of the option depends upon the second Brownian motion in which the volatility is defined, the (1 + 2) evolution is not reduced to the Black--Scholes--Merton Equation, the model admits five Lie point symmetries in addition to the linear symmetry and the infinite number of solution symmetries. We apply the zeroth-order invariants of the Lie symmetries and we reduce the (1 + 2) evolution equation to a linear second-order ordinary differential equation. Finally, we study two models of special interest, the Heston model and the Stein--Stein model. --- 中文摘要: 我们对随机波动率为$\\ sigma$的欧式期权的Black-Scholes-Merton模型的Lie点对称性进行了分类,其中最后一个由一个带有Orstein-Uhlenbeck项的随机微分方程定义。在该模型中,期权的价值由一个线性(1+2)演化偏微分方程给出,其中期权的价格取决于两个自变量,即标的资产价值S$和一个新变量y$。我们发现,对于任意函数形式的波动率,$\\σ(y)$,除了自动线性对称和无穷多个解对称外,(1+2)演化方程总是允许两个Lie点对称。然而,当$\\ sigma(y)=\\ sigma\\u{0}$且期权价格取决于定义波动率的第二个布朗运动时,(1+2)演化并没有简化为Black-Scholes-Merton方程,该模型除了线性对称和无穷多个解对称外,还允许五个Lie点对称。我们应用李对称的零阶不变量,将(1+2)发展方程化为线性二阶常微分方程。最后,我们研究了两个特别有趣的模型,赫斯顿模型和斯坦-斯坦模型。 --- 分类信息: 一级分类:Mathematics 数学 二级分类:Analysis of PDEs 偏微分方程分析 分类描述:Existence and uniqueness, boundary conditions, linear and non-linear operators, stability, soliton theory, integrable PDE\'s, conservation laws, qualitative dynamics 存在唯一性,边界条件,线性和非线性算子,稳定性,孤子理论,可积偏微分方程,守恒律,定性动力学 -- 一级分类:Quantitative Finance 数量金融学 二级分类:Pricing of Securities 证券定价 分类描述:Valuation and hedging of financial securities, their derivatives, and structured products 金融证券及其衍生产品和结构化产品的估值和套期保值 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明