| 所在主题: | |
| 文件名: Correlation_structure_and_principal_components_in_global_crude_oil_market.pdf | |
| 资料下载链接地址: https://bbs.pinggu.org/a-3687890.html | |
| 附件大小: | |
|
英文标题:
《Correlation structure and principal components in global crude oil market》 --- 作者: Yue-Hua Dai (ECUST), Wen-Jie Xie (ECUST), Zhi-Qiang Jiang (ECUST), George J. Jiang (WSU), Wei-Xing Zhou (ECUST) --- 最新提交年份: 2014 --- 英文摘要: This article investigates the correlation structure of the global crude oil market using the daily returns of 71 oil price time series across the world from 1992 to 2012. We identify from the correlation matrix six clusters of time series exhibiting evident geographical traits, which supports Weiner\'s (1991) regionalization hypothesis of the global oil market. We find that intra-cluster pairs of time series are highly correlated while inter-cluster pairs have relatively low correlations. Principal component analysis shows that most eigenvalues of the correlation matrix locate outside the prediction of the random matrix theory and these deviating eigenvalues and their corresponding eigenvectors contain rich economic information. Specifically, the largest eigenvalue reflects a collective effect of the global market, other four largest eigenvalues possess a partitioning function to distinguish the six clusters, and the smallest eigenvalues highlight the pairs of time series with the largest correlation coefficients. We construct an index of the global oil market based on the eigenfortfolio of the largest eigenvalue, which evolves similarly as the average price time series and has better performance than the benchmark $1/N$ portfolio under the buy-and-hold strategy. --- 中文摘要: 本文利用1992年至2012年全球71个油价时间序列的日收益率,研究了全球原油市场的相关结构。我们从相关矩阵中确定了六组具有明显地理特征的时间序列,这支持Weiner(1991)的全球石油市场区域化假设。我们发现,时间序列的簇内对具有高度相关性,而簇间对具有相对较低的相关性。主成分分析表明,相关矩阵的大多数特征值都位于随机矩阵理论的预测范围之外,这些偏离特征值及其对应的特征向量包含着丰富的经济信息。具体而言,最大特征值反映了全球市场的集体效应,其他四个最大特征值具有区分六个集群的分区函数,最小特征值突出了相关系数最大的时间序列对。我们基于最大特征值的特征值Fortfolio构建了一个全球石油市场指数,该指数与平均价格时间序列的演化过程类似,在买入持有策略下,其表现优于基准1美元/牛美元投资组合。 --- 分类信息: 一级分类:Quantitative Finance 数量金融学 二级分类:Statistical Finance 统计金融 分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data 统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用 -- 一级分类:Physics 物理学 二级分类:Physics and Society 物理学与社会 分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks). 社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。 -- --- PDF下载: --> |
|
熟悉论坛请点击新手指南
|
|
| 下载说明 | |
|
1、论坛支持迅雷和网际快车等p2p多线程软件下载,请在上面选择下载通道单击右健下载即可。 2、论坛会定期自动批量更新下载地址,所以请不要浪费时间盗链论坛资源,盗链地址会很快失效。 3、本站为非盈利性质的学术交流网站,鼓励和保护原创作品,拒绝未经版权人许可的上传行为。本站如接到版权人发出的合格侵权通知,将积极的采取必要措施;同时,本站也将在技术手段和能力范围内,履行版权保护的注意义务。 (如有侵权,欢迎举报) |
|
京ICP备16021002号-2 京B2-20170662号
京公网安备 11010802022788号
论坛法律顾问:王进律师
知识产权保护声明
免责及隐私声明